imp/celeste/math/numbers/__init__.py

82 lines
2.5 KiB
Python

'''
Terminology:
Although "divisor" and "factor" mean the same thing.
When Celeste discusses "divisors of n" it is implied to
mean "proper divisors of n + n itself", and "factors" are
the "prime proper divisors of n".
'''
from celeste.extern.primefac import primefac
def factors(n: int) -> int:
pfactors: list[tuple[int, int]] = []
# generate primes and progressively store them in pfactors
pfgen = primefac(n)
watching = next(pfgen)
mult = 1
# ASSUMPTION: prime generation is (non-strict) monotone increasing
while True:
p = next(pfgen, None)
if p == watching:
mult += 1
else:
pfactors.append((watching, mult))
watching = p # reset
mult = 1 # reset
if p is None:
break
return pfactors
def factors2divisors(pfactors: list[tuple[int, int]],
sorted: bool = True) -> list[int]:
'''
Generates all divisors < n of an integer n given its prime factorisation.
Input: prime factorisation of n (excluding 1 and n, and duplicates)
in the typical form: list[(prime, multiplicity)]
'''
divisors = [1]
for (prime, multiplicity) in pfactors:
extension = []
for i in range(1, multiplicity+1):
term = prime**i
extension.extend(list([divisor*term for divisor in divisors]))
divisors.extend(extension)
if sorted: divisors.sort()
return divisors
def factors2aliquots(pfactors: list[tuple[int, int]]) -> list[int]:
return factors2divisors(pfactors)[:-1]
# "aliquots(n)" is an alias for "divisors(n)"
def aliquots(n: int) -> int:
'''
Returns all aliquot parts (proper divisors) of
an integer n, that is all divisors 0 < d <= n.
'''
return factors2aliquots(factors(n))
def divisors(n: int) -> int:
'''
Returns all divisors 0 < d < n of an integer n.
'''
return factors2divisors(factors(n))
def aliquot_sum(n: int) -> int:
return sum(aliquots(n))
def littleomega(n: int) -> int:
'''
The Little Omega function counts the number of
distinct prime factors of an integer n.
Ref: https://en.wikipedia.org/wiki/Prime_omega_function
'''
return len(factors(n))
def bigomega(n: int) -> int:
'''
The Big Omega function counts the total number of
prime factors (including multiplicity) of an integer n.
Ref: https://en.wikipedia.org/wiki/Prime_omega_function
'''
return sum(factor[1] for factor in factors(n))