Add basic tests of semi-primality and k-almost primality
This commit is contained in:
parent
3a407b6456
commit
d403da53db
3 changed files with 24 additions and 0 deletions
5
imp/math/numbers/functions.py
Normal file
5
imp/math/numbers/functions.py
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
def factorial(n: int) -> int:
|
||||
if n == 0: return 1
|
||||
return n * factorial(n-1)
|
||||
|
||||
def
|
||||
1
imp/math/numbers/kinds.py
Normal file
1
imp/math/numbers/kinds.py
Normal file
|
|
@ -0,0 +1 @@
|
|||
|
||||
|
|
@ -1,4 +1,22 @@
|
|||
from math import gcd
|
||||
from imp.math.numbers import bigomega
|
||||
|
||||
def coprime(n: int, m: int) -> bool:
|
||||
return gcd(n, m) == 1
|
||||
|
||||
def almostprime(n: int, k: int) -> bool:
|
||||
'''
|
||||
A natural n is "k-almost prime" if it has exactly
|
||||
k prime factors (including multiplicity).
|
||||
'''
|
||||
return (bigomega(n) == k)
|
||||
|
||||
def semiprime(n: int) -> bool:
|
||||
'''
|
||||
A semiprime number is one that is 2-almost prime.
|
||||
Ref: https://en.wikipedia.org/wiki/Semiprime
|
||||
'''
|
||||
return almostprime(n, 2)
|
||||
|
||||
'''
|
||||
Euler's Totient (Phi) Function
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue