Improved eulertotient(n) implementation

This commit is contained in:
Emile Clark-Boman 2025-07-01 21:08:39 +10:00
parent 26c2d25c28
commit cfba98d2e0
2 changed files with 31 additions and 68 deletions

View file

@ -1,5 +1,10 @@
from math import gcd from math import gcd, inf
from imp.math.numbers import bigomega
from imp.math.numbers import bigomega, factors
from imp.extern.primefac import (
isprime,
primegen as Primes,
)
def coprime(n: int, m: int) -> bool: def coprime(n: int, m: int) -> bool:
return gcd(n, m) == 1 return gcd(n, m) == 1
@ -18,68 +23,25 @@ def semiprime(n: int) -> bool:
''' '''
return almostprime(n, 2) return almostprime(n, 2)
''' def eulertotient(x: int | list) -> int:
Euler's Totient (Phi) Function '''
''' Evaluates Euler's Totient function.
def totient(n: int) -> int: Input: `x: int` is prime factorised by Lucas A. Brown's primefac.py
phi = int(n > 1 and n) else `x: list` is assumed to the prime factorisation of `x: int`
for p in range(2, int(n ** .5) + 1): '''
if not n % p: pfactors = x if isinstance(x, list) else factors(n)
phi -= phi // p return prod((p-1)*(p**(e-1)) for (p, e) in pfactors)
while not n % p: # def eulertotient(n: int) -> int:
n //= p # '''
#if n is > 1 it means it is prime # Uses trial division to compute
if n > 1: phi -= phi // n # Euler's Totient (Phi) Function.
return phi # '''
# phi = int(n > 1 and n)
''' # for p in range(2, int(n ** .5) + 1):
Tests the primality of an integer using its totient. # if not n % p:
NOTE: If totient(n) has already been calculated # phi -= phi // p
then pass it as the optional phi parameter. # while not n % p:
''' # n //= p
def is_prime(n: int, phi: int = None) -> bool: # #if n is > 1 it means it is prime
return n - 1 == (phi if phi is not None else totient(n)) # if n > 1: phi -= phi // n
# return phi
'''
Prime number generator function.
Returns the tuple (p, phi(p)) where p is prime
and phi is Euler's totient function.
'''
def prime_gen(yield_phi: bool = False) -> int | tuple[int, int]:
n = 1
while True:
n += 1
phi = totient(n)
if is_prime(n, phi=phi):
if yield_phi:
yield (n, phi)
else:
yield n
'''
Returns the prime factorisation of a number.
Returns a list of tuples (p, m) where p is
a prime factor and m is its multiplicity.
NOTE: uses a trial division algorithm
'''
def prime_factors(n: int) -> list[tuple[int, int]]:
phi = totient(n)
if is_prime(n, phi=phi):
return [(n, 1)]
factors = []
for p in prime_gen(yield_phi=False):
if p >= n:
break
# check if divisor
multiplicity = 0
while n % p == 0:
n //= p
multiplicity += 1
if multiplicity:
factors.append((p, multiplicity))
if is_prime(n):
break
if n != 1:
factors.append((n, 1))
return factors

View file

@ -1,8 +1,9 @@
from collections.abc import Iterable
from itertools import chain, combinations from itertools import chain, combinations
def digits(n: int) -> int: def digits(n: int) -> int:
return len(str(n)) return len(str(n))
def powerset(iterable): def powerset(iterable: Iterable) -> Iterable:
s = list(iterable) s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))