added naive SHA256 and RSA implementations
This commit is contained in:
parent
cb1b757ca2
commit
c359765855
2 changed files with 25 additions and 0 deletions
7
imp/crypto/hash.py
Normal file
7
imp/crypto/hash.py
Normal file
|
|
@ -0,0 +1,7 @@
|
|||
import hashlib
|
||||
|
||||
def sha256(data: bytes, as_bytes: bool = False) -> bytes:
|
||||
hasher = hashlib.sha256()
|
||||
hasher.update(data)
|
||||
hash = hasher.digest()
|
||||
return hash if as_bytes else int.from_bytes(hash)
|
||||
18
imp/crypto/rsa.py
Normal file
18
imp/crypto/rsa.py
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
'''
|
||||
Simplification of Euler's Totient function knowing
|
||||
the prime factorisation for the public key N value.
|
||||
'''
|
||||
def _totient(p: int, q: int) -> int:
|
||||
return (p - 1) * (q - 1)
|
||||
|
||||
'''
|
||||
Implements RSA encryption as modular exponentiation.
|
||||
'''
|
||||
def encrypt(plaintext: int, e: int, N: int) -> int:
|
||||
return pow(plaintext, e, N)
|
||||
def decrypt(ciphertext: int, d: int, N: int) -> int:
|
||||
return pow(ciphertext, d, N)
|
||||
|
||||
def gen_private_key(e: int, p: int, q: int) -> int:
|
||||
return pow(e, -1, _totient(p, q))
|
||||
|
||||
Loading…
Add table
Add a link
Reference in a new issue