hammer/src/cfgrammar.c
Meredith L. Patterson cb93c3b4ec Merge pull request #141 from pesco/iterative
Iterative (chunked) input processing
2015-09-23 10:52:22 +02:00

993 lines
25 KiB
C

/* Context-free grammar representation and analysis */
#include "cfgrammar.h"
#include "allocator.h"
#include <assert.h>
#include <ctype.h>
// a special map value for use when the map is used to represent a set
static void * const INSET = (void *)(uintptr_t)1;
HCFGrammar *h_cfgrammar_new(HAllocator *mm__)
{
HCFGrammar *g = h_new(HCFGrammar, 1);
assert(g != NULL);
g->mm__ = mm__;
g->arena = h_new_arena(mm__, 0); // default blocksize
g->nts = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
g->start = NULL;
g->geneps = NULL;
g->first = NULL;
g->follow = NULL;
g->kmax = 0; // will be increased as needed by ensure_k
HStringMap *eps = h_stringmap_new(g->arena);
h_stringmap_put_epsilon(eps, INSET);
g->singleton_epsilon = eps;
return g;
}
void h_cfgrammar_free(HCFGrammar *g)
{
HAllocator *mm__ = g->mm__;
h_delete_arena(g->arena);
h_free(g);
}
// helpers
static void collect_nts(HCFGrammar *grammar, HCFChoice *symbol);
static void collect_geneps(HCFGrammar *grammar);
HCFGrammar *h_cfgrammar(HAllocator* mm__, const HParser *parser)
{
if (!parser->vtable->isValidCF(parser->env)) {
return NULL;
}
// convert parser to CFG form ("desugar").
HCFChoice *desugared = h_desugar(mm__, NULL, parser);
if (desugared == NULL) {
return NULL; // -> backend not suitable for this parser
}
return h_cfgrammar_(mm__, desugared);
}
HCFGrammar *h_cfgrammar_(HAllocator* mm__, HCFChoice *desugared)
{
HCFGrammar *g = h_cfgrammar_new(mm__);
// recursively traverse the desugared form and collect all HCFChoices that
// represent a nonterminal (type HCF_CHOICE or HCF_CHARSET).
collect_nts(g, desugared);
if (h_hashset_empty(g->nts)) {
// desugared is a terminal. wrap it in a singleton HCF_CHOICE.
HCFChoice *nt = h_new(HCFChoice, 1);
nt->type = HCF_CHOICE;
nt->seq = h_new(HCFSequence *, 2);
nt->seq[0] = h_new(HCFSequence, 1);
nt->seq[0]->items = h_new(HCFChoice *, 2);
nt->seq[0]->items[0] = desugared;
nt->seq[0]->items[1] = NULL;
nt->seq[1] = NULL;
nt->pred = NULL;
nt->action = NULL;
nt->reshape = h_act_first;
h_hashset_put(g->nts, nt);
g->start = nt;
} else {
g->start = desugared;
}
// determine which nonterminals generate epsilon
collect_geneps(g);
return g;
}
/* Add all nonterminals reachable from symbol to grammar. */
static void collect_nts(HCFGrammar *grammar, HCFChoice *symbol)
{
HCFSequence **s; // for the rhs (sentential form) of a production
HCFChoice **x; // for a symbol in s
if (h_hashset_present(grammar->nts, symbol)) {
return; // already visited, get out
}
switch(symbol->type) {
case HCF_CHAR:
case HCF_END:
break; // it's a terminal symbol, nothing to do
case HCF_CHARSET:
break; // NB charsets are considered terminal, too
case HCF_CHOICE:
// exploiting the fact that HHashSet is also a HHashTable to number the
// nonterminals.
// NB top-level (start) symbol gets 0.
h_hashtable_put(grammar->nts, symbol,
(void *)(uintptr_t)grammar->nts->used);
// each element s of symbol->seq (HCFSequence) represents the RHS of
// a production. call self on all symbols (HCFChoice) in s.
for(s = symbol->seq; *s != NULL; s++) {
for(x = (*s)->items; *x != NULL; x++) {
collect_nts(grammar, *x);
}
}
break;
default: // should not be reachable
assert_message(0, "unknown HCFChoice type");
}
}
/* Increase g->kmax if needed, allocating enough first/follow slots. */
static void ensure_k(HCFGrammar *g, size_t k)
{
if (k <= g->kmax) {
return;
}
// NB: we don't actually use first/follow[0] but allocate it anyway
// so indices of the array correspond neatly to values of k
// allocate the new arrays
HHashTable **first = h_arena_malloc(g->arena, (k+1)*sizeof(HHashTable *));
HHashTable **follow = h_arena_malloc(g->arena, (k+1)*sizeof(HHashTable *));
if (g->kmax > 0) {
// we are resizing, copy the old tables over
for(size_t i=0; i<=g->kmax; i++) {
first[i] = g->first[i];
follow[i] = g->follow[i];
}
} else {
// we are initializing, allocate the first (in fact, dummy) tables
first[0] = h_hashtable_new(g->arena, h_eq_ptr, h_hash_ptr);
follow[0] = h_hashtable_new(g->arena, h_eq_ptr, h_hash_ptr);
}
// allocate the new tables
for(size_t i=g->kmax+1; i<=k; i++) {
first[i] = h_hashtable_new(g->arena, h_eq_ptr, h_hash_ptr);
follow[i] = h_hashtable_new(g->arena, h_eq_ptr, h_hash_ptr);
}
g->first = first;
g->follow = follow;
g->kmax = k;
}
bool h_derives_epsilon(HCFGrammar *g, const HCFChoice *symbol)
{
// XXX this can now also be implemented in terms of h_first:
// h_stringmap_present_epsilon(h_first(1, g, symbol))
// then the geneps structure and associated functions would be unneed
assert(g->geneps != NULL);
switch(symbol->type) {
case HCF_END: // the end token doesn't count as empty
case HCF_CHAR:
case HCF_CHARSET:
return false;
default: // HCF_CHOICE
return h_hashset_present(g->geneps, symbol);
}
}
bool h_derives_epsilon_seq(HCFGrammar *g, HCFChoice **s)
{
// return true iff all symbols in s derive epsilon
for(; *s; s++) {
if (!h_derives_epsilon(g, *s)) {
return false;
}
}
return true;
}
/* Populate the geneps member of g; no-op if called multiple times. */
static void collect_geneps(HCFGrammar *g)
{
if (g->geneps != NULL) {
return;
}
g->geneps = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
assert(g->geneps != NULL);
// iterate over the grammar's symbols, the elements of g->nts.
// add any we can identify as deriving epsilon to g->geneps.
// repeat until g->geneps no longer changes.
size_t prevused;
do {
prevused = g->geneps->used;
size_t i;
HHashTableEntry *hte;
for(i=0; i < g->nts->capacity; i++) {
for(hte = &g->nts->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
const HCFChoice *symbol = hte->key;
assert(symbol->type == HCF_CHOICE);
// this NT derives epsilon if any one of its productions does.
HCFSequence **p;
for(p = symbol->seq; *p != NULL; p++) {
if (h_derives_epsilon_seq(g, (*p)->items)) {
h_hashset_put(g->geneps, symbol);
break;
}
}
}
}
} while(g->geneps->used != prevused);
}
HStringMap *h_stringmap_new(HArena *a)
{
HStringMap *m = h_arena_malloc(a, sizeof(HStringMap));
m->epsilon_branch = NULL;
m->end_branch = NULL;
m->char_branches = h_hashtable_new(a, h_eq_ptr, h_hash_ptr);
m->arena = a;
return m;
}
void h_stringmap_put_end(HStringMap *m, void *v)
{
m->end_branch = v;
}
void h_stringmap_put_epsilon(HStringMap *m, void *v)
{
m->epsilon_branch = v;
}
void h_stringmap_put_after(HStringMap *m, uint8_t c, HStringMap *ends)
{
h_hashtable_put(m->char_branches, (void *)char_key(c), ends);
}
void h_stringmap_put_char(HStringMap *m, uint8_t c, void *v)
{
HStringMap *node = h_stringmap_new(m->arena);
h_stringmap_put_epsilon(node, v);
h_stringmap_put_after(m, c, node);
}
// helper for h_stringmap_update
static void *combine_stringmap(void *v1, const void *v2)
{
HStringMap *m1 = v1;
const HStringMap *m2 = v2;
if (!m1) {
m1 = h_stringmap_new(m2->arena);
}
h_stringmap_update(m1, m2);
return m1;
}
/* Note: Does *not* reuse submaps from n in building m. */
void h_stringmap_update(HStringMap *m, const HStringMap *n)
{
if (n->epsilon_branch) {
m->epsilon_branch = n->epsilon_branch;
}
if (n->end_branch) {
m->end_branch = n->end_branch;
}
h_hashtable_merge(combine_stringmap, m->char_branches, n->char_branches);
}
HStringMap *h_stringmap_copy(HArena *a, const HStringMap *m)
{
HStringMap *res = h_stringmap_new(a);
h_stringmap_update(res, m);
return res;
}
/* Replace all occurances of old in m with new.
* If old is NULL, replace all values in m with new.
* If new is NULL, remove the respective values.
*/
void h_stringmap_replace(HStringMap *m, void *old, void *new)
{
if (!old) {
if (m->epsilon_branch) {
m->epsilon_branch = new;
}
if (m->end_branch) {
m->end_branch = new;
}
} else {
if (m->epsilon_branch == old) {
m->epsilon_branch = new;
}
if (m->end_branch == old) {
m->end_branch = new;
}
}
// iterate over m->char_branches
const HHashTable *ht = m->char_branches;
for (size_t i=0; i < ht->capacity; i++) {
for (HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
HStringMap *m_ = hte->value;
if (m_) {
h_stringmap_replace(m_, old, new);
}
}
}
}
void *h_stringmap_get(const HStringMap *m, const uint8_t *str, size_t n, bool end)
{
for(size_t i=0; i<n; i++) {
if (i==n-1 && end && m->end_branch) {
return m->end_branch;
}
m = h_stringmap_get_char(m, str[i]);
if (!m) {
return NULL;
}
}
return m->epsilon_branch;
}
// A NULL result means no parse. NEED_INPUT means lookahead is too short.
void *h_stringmap_get_lookahead(const HStringMap *m, HInputStream lookahead)
{
while(m) {
if (m->epsilon_branch) { // input matched
// assert: another lookahead would not bring a more specific match.
// this is for the table generator to ensure. (LLk)
return m->epsilon_branch;
}
// note the lookahead stream is passed by value, i.e. a copy.
// reading bits from it does not consume them from the real input.
uint8_t c = h_read_bits(&lookahead, 8, false);
if (lookahead.overrun) { // end of chunk
if (lookahead.last_chunk) { // end of input
// XXX assumption of byte-wise grammar and input
return m->end_branch;
} else {
return NEED_INPUT;
}
}
// no match yet, descend
m = h_stringmap_get_char(m, c);
}
return NULL;
}
bool h_stringmap_present(const HStringMap *m, const uint8_t *str, size_t n, bool end)
{
return (h_stringmap_get(m, str, n, end) != NULL);
}
bool h_stringmap_present_epsilon(const HStringMap *m)
{
return (m->epsilon_branch != NULL);
}
bool h_stringmap_empty(const HStringMap *m)
{
return (m->epsilon_branch == NULL
&& m->end_branch == NULL
&& h_hashtable_empty(m->char_branches));
}
const HStringMap *h_first(size_t k, HCFGrammar *g, const HCFChoice *x)
{
HStringMap *ret;
HCFSequence **p;
uint8_t c;
// shortcut: first_0(X) is always {""}
if (k==0) {
return g->singleton_epsilon;
}
// memoize via g->first
ensure_k(g, k);
ret = h_hashtable_get(g->first[k], x);
if (ret != NULL) {
return ret;
}
ret = h_stringmap_new(g->arena);
assert(ret != NULL);
h_hashtable_put(g->first[k], x, ret);
switch(x->type) {
case HCF_END:
h_stringmap_put_end(ret, INSET);
break;
case HCF_CHAR:
h_stringmap_put_char(ret, x->chr, INSET);
break;
case HCF_CHARSET:
c=0;
do {
if (charset_isset(x->charset, c)) {
h_stringmap_put_char(ret, c, INSET);
}
} while(c++ < 255);
break;
case HCF_CHOICE:
// this is a nonterminal
// return the union of the first sets of all productions
for(p=x->seq; *p; ++p)
h_stringmap_update(ret, h_first_seq(k, g, (*p)->items));
break;
default: // should not be reached
assert_message(0, "unknown HCFChoice type");
}
return ret;
}
// helpers for h_first_seq, definitions below
static bool is_singleton_epsilon(const HStringMap *m);
static bool any_string_shorter(size_t k, const HStringMap *m);
// pointer to functions like h_first_seq
typedef const HStringMap *(*StringSetFun)(size_t, HCFGrammar *, HCFChoice **);
// helper for h_first_seq and h_follow
static void stringset_extend(HCFGrammar *g, HStringMap *ret,
size_t k, const HStringMap *as,
StringSetFun f, HCFChoice **tail);
const HStringMap *h_first_seq(size_t k, HCFGrammar *g, HCFChoice **s)
{
// shortcut: the first set of the empty sequence, for any k, is {""}
if (*s == NULL) {
return g->singleton_epsilon;
}
// first_k(X tail) = { a b | a <- first_k(X), b <- first_l(tail), l=k-|a| }
HCFChoice *x = s[0];
HCFChoice **tail = s+1;
const HStringMap *first_x = h_first(k, g, x);
// shortcut: if first_k(X) = {""}, just return first_k(tail)
if (is_singleton_epsilon(first_x)) {
return h_first_seq(k, g, tail);
}
// shortcut: if no elements of first_k(X) have length <k, just return first_k(X)
if (!any_string_shorter(k, first_x)) {
return first_x;
}
// create a new result set and build up the set described above
HStringMap *ret = h_stringmap_new(g->arena);
// extend the elements of first_k(X) up to length k from tail
stringset_extend(g, ret, k, first_x, h_first_seq, tail);
return ret;
}
static bool is_singleton_epsilon(const HStringMap *m)
{
return ( m->epsilon_branch
&& !m->end_branch
&& h_hashtable_empty(m->char_branches) );
}
static bool any_string_shorter(size_t k, const HStringMap *m)
{
if (k==0) {
return false;
}
if (m->epsilon_branch) {
return true;
}
// iterate over m->char_branches
const HHashTable *ht = m->char_branches;
for (size_t i=0; i < ht->capacity; i++) {
for (HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
HStringMap *m_ = hte->value;
// check subtree for strings shorter than k-1
if (any_string_shorter(k-1, m_)) {
return true;
}
}
}
return false;
}
// helper for h_predict
static void remove_all_shorter(size_t k, HStringMap *m)
{
if (k==0) {
return;
}
m->epsilon_branch = NULL;
if (k==1) {
return;
}
// iterate over m->char_branches
const HHashTable *ht = m->char_branches;
for (size_t i=0; i < ht->capacity; i++) {
for (HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
remove_all_shorter(k-1, hte->value); // recursion into subtree
}
}
}
// h_follow adapted to the signature of StringSetFun
static inline
const HStringMap *h_follow_(size_t k, HCFGrammar *g, HCFChoice **s)
{
return h_follow(k, g, *s);
}
const HStringMap *h_follow(size_t k, HCFGrammar *g, const HCFChoice *x)
{
// consider all occurances of X in g
// the follow set of X is the union of:
// {$} if X is the start symbol
// given a production "A -> alpha X tail":
// first_k(tail follow_k(A))
// first_k(tail follow_k(A)) =
// { a b | a <- first_k(tail), b <- follow_l(A), l=k-|a| }
HStringMap *ret;
// shortcut: follow_0(X) is always {""}
if (k==0) {
return g->singleton_epsilon;
}
// memoize via g->follow
ensure_k(g, k);
ret = h_hashtable_get(g->follow[k], x);
if (ret != NULL) {
return ret;
}
ret = h_stringmap_new(g->arena);
assert(ret != NULL);
h_hashtable_put(g->follow[k], x, ret);
// if X is the start symbol, the end token is in its follow set
if (x == g->start) {
h_stringmap_put_end(ret, INSET);
}
// iterate over g->nts
size_t i;
HHashTableEntry *hte;
for (i=0; i < g->nts->capacity; i++) {
for (hte = &g->nts->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
HCFChoice *a = (void *)hte->key; // production's left-hand symbol
assert(a->type == HCF_CHOICE);
// iterate over the productions for A
HCFSequence **p;
for (p=a->seq; *p; p++) {
HCFChoice **s = (*p)->items; // production's right-hand side
for (; *s; s++) {
if (*s == x) { // occurance found
HCFChoice **tail = s+1;
const HStringMap *first_tail = h_first_seq(k, g, tail);
// extend the elems of first_k(tail) up to length k from follow(A)
stringset_extend(g, ret, k, first_tail, h_follow_, &a);
}
}
}
}
}
return ret;
}
HStringMap *h_predict(size_t k, HCFGrammar *g,
const HCFChoice *A, const HCFSequence *rhs)
{
HStringMap *ret = h_stringmap_new(g->arena);
// predict_k(A -> rhs) =
// { ab | a <- first_k(rhs), b <- follow_k(A), |ab|=k }
const HStringMap *first_rhs = h_first_seq(k, g, rhs->items);
// casting the const off of A below. note: stringset_extend does
// not touch this argument, only passes it through to h_follow
// in this case, which accepts it, once again, as const.
stringset_extend(g, ret, k, first_rhs, h_follow_, (HCFChoice **)&A);
// make sure there are only strings of length _exactly_ k
remove_all_shorter(k, ret);
return ret;
}
// add the set { a b | a <- as, b <- f_l(S), l=k-|a| } to ret
static void stringset_extend(HCFGrammar *g, HStringMap *ret,
size_t k, const HStringMap *as,
StringSetFun f, HCFChoice **tail)
{
if (as->epsilon_branch) {
// for a="", add f_k(tail) to ret
h_stringmap_update(ret, f(k, g, tail));
}
if (as->end_branch) {
// for a="$", nothing can follow; just add "$" to ret
// NB: formally, "$" is considered to be of length k
h_stringmap_put_end(ret, INSET);
}
// iterate over as->char_branches
const HHashTable *ht = as->char_branches;
for(size_t i=0; i < ht->capacity; i++) {
for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
uint8_t c = key_char((HCharKey)hte->key);
// follow the branch to find the set { a' | t a' <- as }
HStringMap *as_ = (HStringMap *)hte->value;
// now the elements of ret that begin with t are given by
// t { a b | a <- as_, b <- f_l(tail), l=k-|a|-1 }
// so we can use recursion over k
HStringMap *ret_ = h_stringmap_new(g->arena);
h_stringmap_put_after(ret, c, ret_);
stringset_extend(g, ret_, k-1, as_, f, tail);
}
}
}
void h_pprint_char(FILE *f, uint8_t c)
{
switch(c) {
case '"': fputs("\\\"", f); break;
case '\\': fputs("\\\\", f); break;
case '\b': fputs("\\b", f); break;
case '\t': fputs("\\t", f); break;
case '\n': fputs("\\n", f); break;
case '\r': fputs("\\r", f); break;
default:
if (isprint((int)c)) {
fputc(c, f);
} else {
fprintf(f, "\\x%.2X", (unsigned int)c);
}
}
}
static void pprint_charset_char(FILE *f, uint8_t c)
{
switch(c) {
case '"': fputc(c, f); break;
case '-': fputs("\\-", f); break;
case ']': fputs("\\-", f); break;
default: h_pprint_char(f, c);
}
}
static void pprint_charset(FILE *f, const HCharset cs)
{
int i;
fputc('[', f);
for(i=0; i<256; i++) {
if (charset_isset(cs, i)) {
pprint_charset_char(f, i);
// detect ranges
if (i+2<256 && charset_isset(cs, i+1) && charset_isset(cs, i+2)) {
fputc('-', f);
for(; i<256 && charset_isset(cs, i); i++);
i--; // back to the last in range
pprint_charset_char(f, i);
}
}
}
fputc(']', f);
}
static const char *nonterminal_name(const HCFGrammar *g, const HCFChoice *nt)
{
static char buf[16] = {0}; // 14 characters in base 26 are enough for 64 bits
// find nt's number in g
size_t n = (uintptr_t)h_hashtable_get(g->nts, nt);
// NB the start symbol (number 0) is always "A".
int i;
for(i=14; i>=0 && (n>0 || i==14); i--) {
buf[i] = 'A' + n%26;
n = n/26; // shift one digit
}
return buf+i+1;
}
static HCFChoice **pprint_string(FILE *f, HCFChoice **x)
{
fputc('"', f);
for(; *x; x++) {
if ((*x)->type != HCF_CHAR) {
break;
}
h_pprint_char(f, (*x)->chr);
}
fputc('"', f);
return x;
}
void h_pprint_symbol(FILE *f, const HCFGrammar *g, const HCFChoice *x)
{
switch(x->type) {
case HCF_CHAR:
fputc('"', f);
h_pprint_char(f, x->chr);
fputc('"', f);
break;
case HCF_END:
fputc('$', f);
break;
case HCF_CHARSET:
pprint_charset(f, x->charset);
break;
default:
fputs(nonterminal_name(g, x), f);
}
}
void h_pprint_sequence(FILE *f, const HCFGrammar *g, const HCFSequence *seq)
{
HCFChoice **x = seq->items;
if (*x == NULL) { // the empty sequence
fputs("\"\"", f);
} else {
while(*x) {
if (x != seq->items) {
fputc(' ', f); // internal separator
}
if ((*x)->type == HCF_CHAR) {
// condense character strings
x = pprint_string(f, x);
} else {
h_pprint_symbol(f, g, *x);
x++;
}
}
}
}
// adds some separators expected below
static void pprint_sequence(FILE *f, const HCFGrammar *g, const HCFSequence *seq)
{
fputc(' ', f);
h_pprint_sequence(f, g, seq);
fputc('\n', f);
}
static void pprint_ntrules(FILE *f, const HCFGrammar *g, const HCFChoice *nt,
int indent, int len)
{
int i;
int column = indent + len;
const char *name = nonterminal_name(g, nt);
// print rule head (symbol name)
for(i=0; i<indent; i++) fputc(' ', f);
fputs(name, f);
i += strlen(name);
for(; i<column; i++) fputc(' ', f);
fputs(" ->", f);
assert(nt->type == HCF_CHOICE);
HCFSequence **p = nt->seq;
if (*p == NULL) {
return; // shouldn't happen
}
pprint_sequence(f, g, *p++); // print first production on the same line
for(; *p; p++) { // print the rest below with "or" bars
for(i=0; i<column; i++) fputc(' ', f); // indent
fputs(" |", f);
pprint_sequence(f, g, *p);
}
}
void h_pprint_grammar(FILE *file, const HCFGrammar *g, int indent)
{
if (g->nts->used < 1) {
return;
}
// determine maximum string length of symbol names
int len;
size_t s;
for(len=1, s=26; s < g->nts->used; len++, s*=26);
// iterate over g->nts
size_t i;
HHashTableEntry *hte;
for(i=0; i < g->nts->capacity; i++) {
for(hte = &g->nts->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
const HCFChoice *a = hte->key; // production's left-hand symbol
assert(a->type == HCF_CHOICE);
pprint_ntrules(file, g, a, indent, len);
}
}
}
void h_pprint_symbolset(FILE *file, const HCFGrammar *g, const HHashSet *set, int indent)
{
int j;
for(j=0; j<indent; j++) fputc(' ', file);
fputc('{', file);
// iterate over set
size_t i;
HHashTableEntry *hte;
const HCFChoice *a = NULL;
for(i=0; i < set->capacity; i++) {
for(hte = &set->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
if(a != NULL) { // we're not on the first element
fputc(',', file);
}
a = hte->key; // production's left-hand symbol
h_pprint_symbol(file, g, a);
}
}
fputs("}\n", file);
}
#define BUFSIZE 512
static bool
pprint_stringmap_elems(FILE *file, bool first, char *prefix, size_t n, char sep,
void (*valprint)(FILE *f, void *env, void *val), void *env,
const HStringMap *map)
{
assert(n < BUFSIZE-4);
if (map->epsilon_branch) {
if (!first) {
fputc(sep, file);
}
first=false;
if (n==0) {
fputs("\"\"", file);
} else {
fputs("\"", file);
fwrite(prefix, 1, n, file);
fputs("\"", file);
}
if (valprint) {
fputc(':', file);
valprint(file, env, map->epsilon_branch);
}
}
if (map->end_branch) {
if (!first) {
fputs(",\"", file);
}
first=false;
if (n>0) {
fputs("\"\"", file);
}
fwrite(prefix, 1, n, file);
if (n>0) {
fputs("\"\"", file);
}
fputs("$", file);
if (valprint) {
fputc(':', file);
valprint(file, env, map->end_branch);
}
}
// iterate over map->char_branches
HHashTable *ht = map->char_branches;
size_t i;
HHashTableEntry *hte;
for(i=0; i < ht->capacity; i++) {
for(hte = &ht->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
uint8_t c = key_char((HCharKey)hte->key);
HStringMap *ends = hte->value;
size_t n_ = n;
switch(c) {
case '$': prefix[n_++] = '\\'; prefix[n_++] = '$'; break;
case '"': prefix[n_++] = '\\'; prefix[n_++] = '"'; break;
case '\\': prefix[n_++] = '\\'; prefix[n_++] = '\\'; break;
case '\b': prefix[n_++] = '\\'; prefix[n_++] = 'b'; break;
case '\t': prefix[n_++] = '\\'; prefix[n_++] = 't'; break;
case '\n': prefix[n_++] = '\\'; prefix[n_++] = 'n'; break;
case '\r': prefix[n_++] = '\\'; prefix[n_++] = 'r'; break;
default:
if (isprint(c)) {
prefix[n_++] = c;
} else {
n_ += sprintf(prefix+n_, "\\x%.2X", c);
}
}
first = pprint_stringmap_elems(file, first, prefix, n_,
sep, valprint, env, ends);
}
}
return first;
}
void h_pprint_stringmap(FILE *file, char sep,
void (*valprint)(FILE *f, void *env, void *val), void *env,
const HStringMap *map)
{
char buf[BUFSIZE];
pprint_stringmap_elems(file, true, buf, 0, sep, valprint, env, map);
}
void h_pprint_stringset(FILE *file, const HStringMap *set, int indent)
{
int j;
for(j=0; j<indent; j++) fputc(' ', file);
fputc('{', file);
h_pprint_stringmap(file, ',', NULL, NULL, set);
fputs("}\n", file);
}