hammer/src/hammer.c
2012-05-12 21:53:54 +01:00

815 lines
25 KiB
C

/* Parser combinators for binary formats.
* Copyright (C) 2012 Meredith L. Patterson, Dan "TQ" Hirsch
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "hammer.h"
#include "internal.h"
#include "allocator.h"
#include <assert.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#define a_new_(arena, typ, count) ((typ*)arena_malloc((arena), sizeof(typ)*(count)))
#define a_new(typ, count) a_new_(state->arena, typ, count)
// we can create a_new0 if necessary. It would allocate some memory and immediately zero it out.
guint djbhash(const uint8_t *buf, size_t len) {
guint hash = 5381;
while (len--) {
hash = hash * 33 + *buf++;
}
return hash;
}
parse_result_t* do_parse(const parser_t* parser, parse_state_t *state) {
// TODO(thequux): add caching here.
parser_cache_key_t key = {
.input_pos = state->input_stream,
.parser = parser
};
// check to see if there is already a result for this object...
if (g_hash_table_contains(state->cache, &key)) {
// it exists!
// TODO(thequux): handle left recursion case
return g_hash_table_lookup(state->cache, &key);
} else {
// It doesn't exist... run the
parse_result_t *res;
if (parser)
res = parser->fn(parser->env, state);
else
res = NULL;
if (state->input_stream.overrun)
res = NULL; // overrun is always failure.
// update the cache
g_hash_table_replace(state->cache, &key, res);
#ifdef CONSISTENCY_CHECK
if (!res) {
state->input_stream = INVALID;
state->input_stream.input = key.input_pos.input;
}
#endif
return res;
}
}
/* Helper function, since these lines appear in every parser */
parse_result_t* make_result(parse_state_t *state, parsed_token_t *tok) {
parse_result_t *ret = a_new(parse_result_t, 1);
ret->ast = tok;
ret->arena = state->arena;
return ret;
}
typedef struct {
uint8_t *str;
uint8_t len;
} token_t;
static parse_result_t* parse_unimplemented(void* env, parse_state_t *state) {
(void) env;
(void) state;
static parsed_token_t token = {
.token_type = TT_ERR
};
static parse_result_t result = {
.ast = &token
};
return &result;
}
static parser_t unimplemented = {
.fn = parse_unimplemented,
.env = NULL
};
static parse_result_t* parse_token(void *env, parse_state_t *state) {
token_t *t = (token_t*)env;
for (int i=0; i<t->len; ++i) {
uint8_t chr = (uint8_t)read_bits(&state->input_stream, 8, false);
if (t->str[i] != chr) {
return NULL;
}
}
parsed_token_t *tok = a_new(parsed_token_t, 1);
tok->token_type = TT_BYTES; tok->bytes.token = t->str; tok->bytes.len = t->len;
return make_result(state, tok);
}
const parser_t* token(const uint8_t *str, const size_t len) {
token_t *t = g_new(token_t, 1);
t->str = (uint8_t*)str, t->len = len;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_token; ret->env = t;
return (const parser_t*)ret;
}
static parse_result_t* parse_ch(void* env, parse_state_t *state) {
uint8_t c = (uint8_t)GPOINTER_TO_UINT(env);
uint8_t r = (uint8_t)read_bits(&state->input_stream, 8, false);
if (c == r) {
parsed_token_t *tok = a_new(parsed_token_t, 1);
tok->token_type = TT_UINT; tok->uint = r;
return make_result(state, tok);
} else {
return NULL;
}
}
const parser_t* ch(const uint8_t c) {
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_ch; ret->env = GUINT_TO_POINTER(c);
return (const parser_t*)ret;
}
typedef struct {
uint8_t lower;
uint8_t upper;
} range_t;
static parse_result_t* parse_whitespace(void* env, parse_state_t *state) {
char c;
input_stream_t bak;
do {
bak = state->input_stream;
c = read_bits(&state->input_stream, 8, false);
if (state->input_stream.overrun)
return NULL;
} while (isspace(c));
state->input_stream = bak;
return do_parse((parser_t*)env, state);
}
const parser_t* whitespace(const parser_t* p) {
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_whitespace;
ret->env = (void*)p;
return ret;
}
const parser_t* action(const parser_t* p, const action_t a) { return &unimplemented; }
static parse_result_t* parse_charset(void *env, parse_state_t *state) {
uint8_t in = read_bits(&state->input_stream, 8, false);
charset cs = (charset)env;
if (charset_isset(cs, in)) {
parsed_token_t *tok = a_new(parsed_token_t, 1);
tok->token_type = TT_UINT; tok->uint = in;
return make_result(state, tok);
} else
return NULL;
}
const parser_t* range(const uint8_t lower, const uint8_t upper) {
parser_t *ret = g_new(parser_t, 1);
charset cs = new_charset();
for (int i = 0; i < 256; i++)
charset_set(cs, i, (lower <= i) && (i <= upper));
ret->fn = parse_charset; ret->env = (void*)cs;
return (const parser_t*)ret;
}
const parser_t* not_in(const uint8_t *options, int count) {
parser_t *ret = g_new(parser_t, 1);
charset cs = new_charset();
for (int i = 0; i < 256; i++)
charset_set(cs, i, 1);
for (int i = 0; i < count; i++)
charset_set(cs, options[i], 0);
ret->fn = parse_charset; ret->env = (void*)cs;
return (const parser_t*)ret;
}
static parse_result_t* parse_end(void *env, parse_state_t *state) {
if (state->input_stream.index == state->input_stream.length) {
parse_result_t *ret = a_new(parse_result_t, 1);
ret->ast = NULL;
return ret;
} else {
return NULL;
}
}
const parser_t* end_p() {
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_end; ret->env = NULL;
return (const parser_t*)ret;
}
static parse_result_t* parse_nothing() {
// not a mistake, this parser always fails
return NULL;
}
const parser_t* nothing_p() {
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_nothing; ret->env = NULL;
return (const parser_t*)ret;
}
typedef struct {
size_t len;
const parser_t **p_array;
} sequence_t;
static parse_result_t* parse_sequence(void *env, parse_state_t *state) {
sequence_t *s = (sequence_t*)env;
GSequence *seq = g_sequence_new(NULL);
for (size_t i=0; i<s->len; ++i) {
parse_result_t *tmp = do_parse(s->p_array[i], state);
// if the interim parse fails, the whole thing fails
if (NULL == tmp) {
return NULL;
} else {
if (tmp->ast)
g_sequence_append(seq, (void*)tmp->ast);
}
}
parsed_token_t *tok = a_new(parsed_token_t, 1);
tok->token_type = TT_SEQUENCE; tok->seq = seq;
return make_result(state, tok);
}
const parser_t* sequence(const parser_t *p, ...) {
va_list ap;
size_t len = 0;
const parser_t *arg;
va_start(ap, p);
do {
len++;
arg = va_arg(ap, const parser_t *);
} while (arg);
va_end(ap);
sequence_t *s = g_new(sequence_t, 1);
s->p_array = g_new(const parser_t *, len);
va_start(ap, p);
s->p_array[0] = p;
for (size_t i = 1; i < len; i++) {
s->p_array[i] = va_arg(ap, const parser_t *);
} while (arg);
va_end(ap);
s->len = len;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_sequence; ret->env = (void*)s;
return ret;
}
static parse_result_t* parse_choice(void *env, parse_state_t *state) {
sequence_t *s = (sequence_t*)env;
input_stream_t backup = state->input_stream;
for (size_t i=0; i<s->len; ++i) {
if (i != 0)
state->input_stream = backup;
parse_result_t *tmp = do_parse(s->p_array[i], state);
if (NULL != tmp)
return tmp;
}
// nothing succeeded, so fail
return NULL;
}
const parser_t* choice(const parser_t* p, ...) {
va_list ap;
size_t len = 0;
sequence_t *s = g_new(sequence_t, 1);
const parser_t *arg;
va_start(ap, p);
do {
len++;
arg = va_arg(ap, const parser_t *);
} while (arg);
va_end(ap);
s->p_array = g_new(const parser_t *, len);
va_start(ap, p);
s->p_array[0] = p;
for (size_t i = 1; i < len; i++) {
s->p_array[i] = va_arg(ap, const parser_t *);
} while (arg);
va_end(ap);
s->len = len;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_choice; ret->env = (void*)s;
return ret;
}
typedef struct {
const parser_t *p1;
const parser_t *p2;
} two_parsers_t;
void accumulate_size(gpointer pr, gpointer acc) {
size_t tmp = GPOINTER_TO_SIZE(acc);
if (NULL != ((parse_result_t*)pr)->ast) {
switch(((parse_result_t*)pr)->ast->token_type) {
case TT_BYTES:
tmp += ((parse_result_t*)pr)->ast->bytes.len;
acc = GSIZE_TO_POINTER(tmp);
break;
case TT_SINT:
case TT_UINT:
tmp += 8;
acc = GSIZE_TO_POINTER(tmp);
break;
case TT_SEQUENCE:
g_sequence_foreach(((parse_result_t*)pr)->ast->seq, accumulate_size, acc);
break;
default:
break;
}
} // no else, if the AST is null then acc doesn't change
}
size_t token_length(parse_result_t *pr) {
size_t ret = 0;
if (NULL == pr) {
return ret;
} else {
accumulate_size(pr, GSIZE_TO_POINTER(ret));
}
return ret;
}
static parse_result_t* parse_butnot(void *env, parse_state_t *state) {
two_parsers_t *parsers = (two_parsers_t*)env;
// cache the initial state of the input stream
input_stream_t start_state = state->input_stream;
parse_result_t *r1 = do_parse(parsers->p1, state);
// if p1 failed, bail out early
if (NULL == r1) {
return NULL;
}
// cache the state after parse #1, since we might have to back up to it
input_stream_t after_p1_state = state->input_stream;
state->input_stream = start_state;
parse_result_t *r2 = do_parse(parsers->p2, state);
// TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases
state->input_stream = after_p1_state;
// if p2 failed, restore post-p1 state and bail out early
if (NULL == r2) {
return r1;
}
size_t r1len = token_length(r1);
size_t r2len = token_length(r2);
// if both match but p1's text is as long as or longer than p2's, fail
if (r1len >= r2len) {
return NULL;
} else {
return r1;
}
}
const parser_t* butnot(const parser_t* p1, const parser_t* p2) {
two_parsers_t *env = g_new(two_parsers_t, 1);
env->p1 = p1; env->p2 = p2;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_butnot; ret->env = (void*)env;
return ret;
}
static parse_result_t* parse_difference(void *env, parse_state_t *state) {
two_parsers_t *parsers = (two_parsers_t*)env;
// cache the initial state of the input stream
input_stream_t start_state = state->input_stream;
parse_result_t *r1 = do_parse(parsers->p1, state);
// if p1 failed, bail out early
if (NULL == r1) {
return NULL;
}
// cache the state after parse #1, since we might have to back up to it
input_stream_t after_p1_state = state->input_stream;
state->input_stream = start_state;
parse_result_t *r2 = do_parse(parsers->p2, state);
// TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases
state->input_stream = after_p1_state;
// if p2 failed, restore post-p1 state and bail out early
if (NULL == r2) {
return r1;
}
size_t r1len = token_length(r1);
size_t r2len = token_length(r2);
// if both match but p1's text is shorter than p2's, fail
if (r1len < r2len) {
return NULL;
} else {
return r1;
}
}
const parser_t* difference(const parser_t* p1, const parser_t* p2) {
two_parsers_t *env = g_new(two_parsers_t, 1);
env->p1 = p1; env->p2 = p2;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_difference; ret->env = (void*)env;
return ret;
}
static parse_result_t* parse_xor(void *env, parse_state_t *state) {
two_parsers_t *parsers = (two_parsers_t*)env;
// cache the initial state of the input stream
input_stream_t start_state = state->input_stream;
parse_result_t *r1 = do_parse(parsers->p1, state);
input_stream_t after_p1_state = state->input_stream;
// reset input stream, parse again
state->input_stream = start_state;
parse_result_t *r2 = do_parse(parsers->p2, state);
if (NULL == r1) {
if (NULL != r2) {
return r2;
} else {
return NULL;
}
} else {
if (NULL == r2) {
state->input_stream = after_p1_state;
return r1;
} else {
return NULL;
}
}
}
const parser_t* xor(const parser_t* p1, const parser_t* p2) {
two_parsers_t *env = g_new(two_parsers_t, 1);
env->p1 = p1; env->p2 = p2;
parser_t *ret = g_new(parser_t, 1);
ret->fn = parse_xor; ret->env = (void*)env;
return ret;
}
const parser_t* repeat0(const parser_t* p) { return &unimplemented; }
const parser_t* repeat1(const parser_t* p) { return &unimplemented; }
const parser_t* repeat_n(const parser_t* p, const size_t n) { return &unimplemented; }
const parser_t* optional(const parser_t* p) { return &unimplemented; }
const parser_t* ignore(const parser_t* p) { return &unimplemented; }
const parser_t* list(const parser_t* p, const parser_t* sep) { return &unimplemented; }
const parser_t* epsilon_p() { return &unimplemented; }
const parser_t* attr_bool(const parser_t* p, attr_bool_t a) { return &unimplemented; }
const parser_t* and(const parser_t* p) { return &unimplemented; }
const parser_t* not(const parser_t* p) { return &unimplemented; }
static guint cache_key_hash(gconstpointer key) {
return djbhash(key, sizeof(parser_cache_key_t));
}
static gboolean cache_key_equal(gconstpointer key1, gconstpointer key2) {
return memcmp(key1, key2, sizeof(parser_cache_key_t)) == 0;
}
parse_result_t* parse(const parser_t* parser, const uint8_t* input, size_t length) {
// Set up a parse state...
arena_t arena = new_arena(0);
parse_state_t *parse_state = a_new_(arena, parse_state_t, 1);
parse_state->cache = g_hash_table_new(cache_key_hash, // hash_func
cache_key_equal);// key_equal_func
parse_state->input_stream.input = input;
parse_state->input_stream.index = 0;
parse_state->input_stream.bit_offset = 8; // bit big endian
parse_state->input_stream.overrun = 0;
parse_state->input_stream.endianness = BIT_BIG_ENDIAN | BYTE_BIG_ENDIAN;
parse_state->input_stream.length = length;
parse_state->arena = arena;
parse_result_t *res = do_parse(parser, parse_state);
// tear down the parse state. For now, leak like a sieve.
// BUG: Leaks like a sieve.
// TODO(thequux): Pull in the arena allocator.
g_hash_table_destroy(parse_state->cache);
return res;
}
#ifdef INCLUDE_TESTS
#include "test_suite.h"
static void test_token(void) {
const parser_t *token_ = token((const uint8_t*)"95\xa2", 3);
g_check_parse_ok(token_, "95\xa2", 3, "<39.35.A2>");
g_check_parse_failed(token_, "95", 2);
}
static void test_ch(void) {
const parser_t *ch_ = ch(0xa2);
g_check_parse_ok(ch_, "\xa2", 1, "s0xa2");
g_check_parse_failed(ch_, "\xa3", 1);
}
static void test_range(void) {
const parser_t *range_ = range('a', 'c');
g_check_parse_ok(range_, "b", 1, "s0x62");
g_check_parse_failed(range_, "d", 1);
}
#if 0
static void test_int64(void) {
uint8_t test1[8] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00 };
uint8_t test2[7] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00 };
const parser_t *int64_ = int64();
g_check_parse_ok(int64_, "\xff\xff\xff\xfe\x00\x00\x00\x00", 8, -8589934592);
g_check_parse_failed(int64_, "\xff\xff\xff\xfe\x00\x00\x00", 7);
}
static void test_int32(void) {
const parser_t *int32_ = int32();
g_check_parse_ok(int32_, "\xff\xfe\x00\x00", 4, -131072);
g_check_parse_failed(int32_, "\xff\xfe\x00", 3);
}
static void test_int16(void) {
const parser_t *int16_ = int16();
g_check_parse_ok(int16_, "\xfe\x00", 2, -512);
g_check_parse_failed(int16_, "\xfe", 1);
}
static void test_int8(void) {
const parser_t *int8_ = int8();
g_check_parse_ok(int8_, "\x88", 1, -120);
g_check_parse_failed(int8_, "", 0)
}
static void test_uint64(void) {
const parser_t *uint64_ = uint64();
g_check_parse_ok(uint64_, "\x00\x00\x00\x02\x00\x00\x00\x00", 8, 8589934592);
g_check_parse_failed(uint64_, "\x00\x00\x00\x02\x00\x00\x00", 7);
}
static void test_uint32(void) {
const parser_t *uint32_ = uint32();
g_check_parse_ok(uint32_, "\x00\x02\x00\x00", 4, 131072);
g_check_parse_failed(uint32_, "\x00\x02\x00", 3)
}
static void test_uint16(void) {
const parser_t *uint16_ = uint16();
g_check_parse_ok(uint16_, "\x02\x00", 2, 512);
g_check_parse_failed(uint16_, "\x02", 1);
}
static void test_uint8(void) {
const parser_t *uint8_ = uint8();
g_check_parse_ok(uint8_, "\x78", 1, 120);
g_check_parse_failed(uint8_, "", 0);
}
static void test_float64(void) {
const parser_t *float64_ = float64();
g_check_parse_ok(float64_, "\x3f\xf0\x00\x00\x00\x00\x00\x00", 8, 1.0);
g_check_parse_failed(float64_, "\x3f\xf0\x00\x00\x00\x00\x00", 7);
}
static void test_float32(void) {
const parser_t *float32_ = float32();
g_check_parse_ok(float32_, "\x3f\x80\x00\x00", 4, 1.0);
g_check_parse_failed(float32_, "\x3f\x80\x00");
}
#endif
static void test_whitespace(void) {
const parser_t *whitespace_ = whitespace(ch('a'));
g_check_parse_ok(whitespace_, "a", 1, "s0x61");
g_check_parse_ok(whitespace_, " a", 2, "s0x61");
g_check_parse_ok(whitespace_, " a", 3, "s0x61");
g_check_parse_ok(whitespace_, "\ta", 2, "s0x61");
g_check_parse_failed(whitespace_, "_a", 2);
}
parse_result_t* upcase(parse_result_t *p) {
return NULL; // shut compiler up
}
static void test_action(void) {
const parser_t *action_ = action(sequence(choice(ch('a'), ch('A'), NULL), choice(ch('b'), ch('B'), NULL), NULL), upcase);
g_check_parse_ok(action_, "ab", 2, "(s0x41, s0x42)");
g_check_parse_ok(action_, "AB", 2, "(s0x41, s0x42)");
}
static void test_not_in(void) {
uint8_t options[3] = { 'a', 'b', 'c' };
const parser_t *not_in_ = not_in(options, 3);
g_check_parse_ok(not_in_, "d", 1, "s0x64");
g_check_parse_failed(not_in_, "a", 1);
}
static void test_end_p(void) {
const parser_t *end_p_ = sequence(ch('a'), end_p(), NULL);
g_check_parse_ok(end_p_, "a", 1, "(s0x61)");
g_check_parse_failed(end_p_, "aa", 2);
}
static void test_nothing_p(void) {
uint8_t test[1] = { 'a' };
const parser_t *nothing_p_ = nothing_p();
parse_result_t *ret = parse(nothing_p_, test, 1);
g_check_failed(ret);
}
static void test_sequence(void) {
const parser_t *sequence_1 = sequence(ch('a'), ch('b'), NULL);
const parser_t *sequence_2 = sequence(ch('a'), whitespace(ch('b')), NULL);
g_check_parse_ok(sequence_1, "ab", 2, "(s0x61 s0x62)");
g_check_parse_failed(sequence_1, "a", 1);
g_check_parse_failed(sequence_1, "b", 1);
g_check_parse_ok(sequence_2, "ab", 2, "(s0x61 s0x62)");
g_check_parse_ok(sequence_2, "a b", 3, "(s0x61 s0x62)");
g_check_parse_ok(sequence_2, "a b", 4, "(s0x61 s0x62)");
}
static void test_choice(void) {
const parser_t *choice_ = choice(ch('a'), ch('b'), NULL);
g_check_parse_ok(choice_, "a", 1, "s0x61");
g_check_parse_ok(choice_, "b", 1, "s0x62");
g_check_parse_failed(choice_, "c", 1);
}
static void test_butnot(void) {
const parser_t *butnot_1 = butnot(ch('a'), token((const uint8_t*)"ab", 2));
const parser_t *butnot_2 = butnot(range('0', '9'), ch('6'));
g_check_parse_ok(butnot_1, "a", 1, "s0x61");
g_check_parse_failed(butnot_1, "ab", 2);
g_check_parse_ok(butnot_1, "aa", 2, "s0x61");
g_check_parse_failed(butnot_2, "6", 1);
}
static void test_difference(void) {
const parser_t *difference_ = difference(token((const uint8_t*)"ab", 2), ch('a'));
g_check_parse_ok(difference_, "ab", 2, "<61.62>");
g_check_parse_failed(difference_, "a", 1);
}
static void test_xor(void) {
const parser_t *xor_ = xor(range('0', '6'), range('5', '9'));
g_check_parse_ok(xor_, "0", 1, "s0x30");
g_check_parse_ok(xor_, "9", 1, "s0x39");
g_check_parse_failed(xor_, "5", 1);
g_check_parse_failed(xor_, "a", 1);
}
static void test_repeat0(void) {
const parser_t *repeat0_ = repeat0(choice(ch('a'), ch('b'), NULL));
g_check_parse_ok(repeat0_, "adef", 4, "(s0x61)");
g_check_parse_ok(repeat0_, "bdef", 4, "(s0x62)");
g_check_parse_ok(repeat0_, "aabbabadef", 10, "(s0x61 s0x61 s0x62 s0x62 s0x61 s0x62 s0x61)");
g_check_parse_ok(repeat0_, "daabbabadef", 11, "()");
}
static void test_repeat1(void) {
const parser_t *repeat1_ = repeat1(choice(ch('a'), ch('b'), NULL));
g_check_parse_ok(repeat1_, "adef", 4, "(s0x61)");
g_check_parse_ok(repeat1_, "bdef", 4, "(s0x62)");
g_check_parse_ok(repeat1_, "aabbabadef", 10, "(s0x61 s0x61 s0x62 s0x62 s0x61 s0x62 s0x61)");
g_check_parse_failed(repeat1_, "daabbabadef", 11);
}
static void test_repeat_n(void) {
const parser_t *repeat_n_ = repeat_n(choice(ch('a'), ch('b'), NULL), 2);
g_check_parse_failed(repeat_n_, "adef", 4);
g_check_parse_ok(repeat_n_, "abdef", 5, "(s0x61 s0x62)");
g_check_parse_failed(repeat_n_, "dabdef", 6);
}
static void test_optional(void) {
const parser_t *optional_ = sequence(ch('a'), optional(choice(ch('b'), ch('c'), NULL)), ch('d'), NULL);
g_check_parse_ok(optional_, "abd", 3, "(s0x61 s0x62 s0x64)");
g_check_parse_ok(optional_, "acd", 3, "(s0x61 s0x63 s0x64)");
g_check_parse_ok(optional_, "ad", 2, "(s0x61 s0x64)");
g_check_parse_failed(optional_, "aed", 3);
g_check_parse_failed(optional_, "ab", 2);
g_check_parse_failed(optional_, "ac", 2);
}
static void test_ignore(void) {
const parser_t *ignore_ = sequence(ch('a'), ignore(ch('b')), ch('c'), NULL);
g_check_parse_ok(ignore_, "abc", 3, "(s0x61 s0x63)");
g_check_parse_failed(ignore_, "ac", 2);
}
static void test_list(void) {
const parser_t *list_ = list(choice(ch('1'), ch('2'), ch('3'), NULL), ch(','));
g_check_parse_ok(list_, "1,2,3", 5, "(s0x31 s0x32 s0x33)");
g_check_parse_ok(list_, "1,3,2", 5, "(s0x31 s0x33 s0x32)");
g_check_parse_ok(list_, "1,3", 3, "(s0x31 s0x33)");
g_check_parse_ok(list_, "3", 1, "(s0x33)");
}
static void test_epsilon_p(void) {
const parser_t *epsilon_p_1 = sequence(ch('a'), epsilon_p(), ch('b'), NULL);
const parser_t *epsilon_p_2 = sequence(epsilon_p(), ch('a'), NULL);
const parser_t *epsilon_p_3 = sequence(ch('a'), epsilon_p(), NULL);
g_check_parse_ok(epsilon_p_1, "ab", 2, "(s0x61 s0x62)");
g_check_parse_ok(epsilon_p_2, "a", 1, "(s0x61)");
g_check_parse_ok(epsilon_p_3, "a", 1, "(s0x61)");
}
static void test_attr_bool(void) {
}
static void test_and(void) {
const parser_t *and_1 = sequence(and(ch('0')), ch('0'), NULL);
const parser_t *and_2 = sequence(and(ch('0')), ch('1'), NULL);
const parser_t *and_3 = sequence(ch('1'), and(ch('2')), NULL);
g_check_parse_ok(and_1, "0", 1, "(s0x30)");
g_check_parse_failed(and_2, "0", 1);
g_check_parse_ok(and_3, "12", 2, "(s0x31)");
}
static void test_not(void) {
const parser_t *not_1 = sequence(ch('a'), choice(ch('+'), token((const uint8_t*)"++", 2), NULL), ch('b'), NULL);
const parser_t *not_2 = sequence(ch('a'), choice(sequence(ch('+'), not(ch('+')), NULL), token((const uint8_t*)"", 2), NULL), ch('b'), NULL);
g_check_parse_ok(not_1, "a+b", 3, "(s0x61 s0x2B s0x62)");
g_check_parse_failed(not_1, "a++b", 4);
g_check_parse_ok(not_2, "a+b", 3, "(s0x61 s0x2B s0x62)");
g_check_parse_ok(not_2, "a++b", 4, "(s0x61 <2B.2B> s0x62)");
}
void register_parser_tests(void) {
g_test_add_func("/core/parser/token", test_token);
g_test_add_func("/core/parser/ch", test_ch);
g_test_add_func("/core/parser/range", test_range);
#if 0
g_test_add_func("/core/parser/int64", test_int64);
g_test_add_func("/core/parser/int32", test_int32);
g_test_add_func("/core/parser/int16", test_int16);
g_test_add_func("/core/parser/int8", test_int8);
g_test_add_func("/core/parser/uint64", test_uint64);
g_test_add_func("/core/parser/uint32", test_uint32);
g_test_add_func("/core/parser/uint16", test_uint16);
g_test_add_func("/core/parser/uint8", test_uint8);
g_test_add_func("/core/parser/float64", test_float64);
g_test_add_func("/core/parser/float32", test_float32);
#endif
g_test_add_func("/core/parser/whitespace", test_whitespace);
g_test_add_func("/core/parser/action", test_action);
g_test_add_func("/core/parser/not_in", test_not_in);
g_test_add_func("/core/parser/end_p", test_end_p);
g_test_add_func("/core/parser/nothing_p", test_nothing_p);
g_test_add_func("/core/parser/sequence", test_sequence);
g_test_add_func("/core/parser/choice", test_choice);
g_test_add_func("/core/parser/butnot", test_butnot);
g_test_add_func("/core/parser/difference", test_difference);
g_test_add_func("/core/parser/xor", test_xor);
g_test_add_func("/core/parser/repeat0", test_repeat0);
g_test_add_func("/core/parser/repeat1", test_repeat1);
g_test_add_func("/core/parser/repeat_n", test_repeat_n);
g_test_add_func("/core/parser/optional", test_optional);
g_test_add_func("/core/parser/list", test_list);
g_test_add_func("/core/parser/epsilon_p", test_epsilon_p);
g_test_add_func("/core/parser/attr_bool", test_attr_bool);
g_test_add_func("/core/parser/and", test_and);
g_test_add_func("/core/parser/not", test_not);
g_test_add_func("/core/parser/ignore", test_ignore);
}
#endif // #ifdef INCLUDE_TESTS