hammer/src/hammer.h
2012-06-01 20:00:51 +02:00

459 lines
13 KiB
C

/* Parser combinators for binary formats.
* Copyright (C) 2012 Meredith L. Patterson, Dan "TQ" Hirsch
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef HAMMER_HAMMER__H
#define HAMMER_HAMMER__H
#include <glib.h>
#include <stdint.h>
#include <stdio.h>
#include "allocator.h"
#define BYTE_BIG_ENDIAN 0x1
#define BIT_BIG_ENDIAN 0x2
#define BIT_LITTLE_ENDIAN 0x0
#define BYTE_LITTLE_ENDIAN 0x0
typedef int bool;
typedef struct HParseState_ HParseState;
typedef enum HTokenType_ {
TT_NONE,
TT_BYTES,
TT_SINT,
TT_UINT,
TT_SEQUENCE,
TT_USER = 64,
TT_ERR,
TT_MAX
} HTokenType;
typedef struct HCountedArray_ {
size_t capacity;
size_t used;
HArena * arena;
struct HParsedToken_ **elements;
} HCountedArray;
typedef struct HParsedToken_ {
HTokenType token_type;
union {
struct {
const uint8_t *token;
size_t len;
} bytes;
int64_t sint;
uint64_t uint;
double dbl;
float flt;
HCountedArray *seq; // a sequence of HParsedToken's
void *user;
};
size_t index;
char bit_offset;
} HParsedToken;
/**
* The result of a successful parse.
* If a parse fails, the parse result will be NULL.
* If a parse is successful but there's nothing there (i.e., if end_p
* succeeds) then there's a parse result but its ast is NULL.
*/
typedef struct HParseResult_ {
const HParsedToken *ast;
long long bit_length;
HArena * arena;
} HParseResult;
/**
* Type of an action to apply to an AST, used in the action() parser.
* It can be any (user-defined) function that takes a HParseResult*
* and returns a HParsedToken*. (This is so that the user doesn't
* have to worry about memory allocation; action() does that for you.)
* Note that the tagged union in HParsedToken* supports user-defined
* types, so you can create your own token types (corresponding to,
* say, structs) and stuff values for them into the void* in the
* tagged union in HParsedToken.
*/
typedef const HParsedToken* (*HAction)(const HParseResult *p);
/**
* Type of a boolean attribute-checking function, used in the
* attr_bool() parser. It can be any (user-defined) function that takes
* a HParseResult* and returns true or false.
*/
typedef bool (*HPredicate)(HParseResult *p);
typedef struct HParserVtable_ {
HParseResult* (*parse)(void *env, HParseState *state);
} HParserVtable;
typedef struct HParser_ {
const HParserVtable *vtable;
void *env;
} HParser;
/**
* Top-level function to call a parser that has been built over some
* piece of input (of known size).
*/
HParseResult* h_parse(const HParser* parser, const uint8_t* input, size_t length);
/**
* Given a string, returns a parser that parses that string value.
*
* Result token type: TT_BYTES
*/
const HParser* h_token(const uint8_t *str, const size_t len);
/**
* Given a single character, returns a parser that parses that
* character.
*
* Result token type: TT_UINT
*/
const HParser* h_ch(const uint8_t c);
/**
* Given two single-character bounds, lower and upper, returns a parser
* that parses a single character within the range [lower, upper]
* (inclusive).
*
* Result token type: TT_UINT
*/
const HParser* h_ch_range(const uint8_t lower, const uint8_t upper);
/**
* Given an integer parser, p, and two integer bounds, lower and upper,
* returns a parser that parses an integral value within the range
* [lower, upper] (inclusive).
*/
const HParser* h_int_range(const HParser *p, const int64_t lower, const int64_t upper);
/**
* Returns a parser that parses the specified number of bits. sign ==
* true if signed, false if unsigned.
*
* Result token type: TT_SINT if sign == true, TT_UINT if sign == false
*/
const HParser* h_bits(size_t len, bool sign);
/**
* Returns a parser that parses a signed 8-byte integer value.
*
* Result token type: TT_SINT
*/
const HParser* h_int64();
/**
* Returns a parser that parses a signed 4-byte integer value.
*
* Result token type: TT_SINT
*/
const HParser* h_int32();
/**
* Returns a parser that parses a signed 2-byte integer value.
*
* Result token type: TT_SINT
*/
const HParser* h_int16();
/**
* Returns a parser that parses a signed 1-byte integer value.
*
* Result token type: TT_SINT
*/
const HParser* h_int8();
/**
* Returns a parser that parses an unsigned 8-byte integer value.
*
* Result token type: TT_UINT
*/
const HParser* h_uint64();
/**
* Returns a parser that parses an unsigned 4-byte integer value.
*
* Result token type: TT_UINT
*/
const HParser* h_uint32();
/**
* Returns a parser that parses an unsigned 2-byte integer value.
*
* Result token type: TT_UINT
*/
const HParser* h_uint16();
/**
* Returns a parser that parses an unsigned 1-byte integer value.
*
* Result token type: TT_UINT
*/
const HParser* h_uint8();
/**
* Given another parser, p, returns a parser that skips any whitespace
* and then applies p.
*
* Result token type: p's result type
*/
const HParser* h_whitespace(const HParser* p);
/**
* Given another parser, p, and a function f, returns a parser that
* applies p, then applies f to everything in the AST of p's result.
*
* Result token type: any
*/
const HParser* h_action(const HParser* p, const HAction a);
/**
* Parse a single character in the given charset.
*
* Result token type: TT_UINT
*/
const HParser* h_in(const uint8_t *charset, size_t length);
/**
* Parse a single character *NOT* in the given charset.
*
* Result token type: TT_UINT
*/
const HParser* h_not_in(const uint8_t *charset, size_t length);
/**
* A no-argument parser that succeeds if there is no more input to
* parse.
*
* Result token type: None. The HParseResult exists but its AST is NULL.
*/
const HParser* h_end_p();
/**
* This parser always fails.
*
* Result token type: NULL. Always.
*/
const HParser* h_nothing_p();
/**
* Given a null-terminated list of parsers, apply each parser in order.
* The parse succeeds only if all parsers succeed.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_sequence(const HParser* p, ...) __attribute__((sentinel));
/**
* Given an array of parsers, p_array, apply each parser in order. The
* first parser to succeed is the result; if no parsers succeed, the
* parse fails.
*
* Result token type: The type of the first successful parser's result.
*/
const HParser* h_choice(const HParser* p, ...) __attribute__((sentinel));
/**
* Given two parsers, p1 and p2, this parser succeeds in the following
* cases:
* - if p1 succeeds and p2 fails
* - if both succeed but p1's result is as long as or longer than p2's
*
* Result token type: p1's result type.
*/
const HParser* h_butnot(const HParser* p1, const HParser* p2);
/**
* Given two parsers, p1 and p2, this parser succeeds in the following
* cases:
* - if p1 succeeds and p2 fails
* - if both succeed but p2's result is shorter than p1's
*
* Result token type: p1's result type.
*/
const HParser* h_difference(const HParser* p1, const HParser* p2);
/**
* Given two parsers, p1 and p2, this parser succeeds if *either* p1 or
* p2 succeed, but not if they both do.
*
* Result token type: The type of the result of whichever parser succeeded.
*/
const HParser* h_xor(const HParser* p1, const HParser* p2);
/**
* Given a parser, p, this parser succeeds for zero or more repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_many(const HParser* p);
/**
* Given a parser, p, this parser succeeds for one or more repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_many1(const HParser* p);
/**
* Given a parser, p, this parser succeeds for exactly N repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_repeat_n(const HParser* p, const size_t n);
/**
* Given a parser, p, this parser succeeds with the value p parsed or
* with an empty result.
*
* Result token type: If p succeeded, the type of its result; if not, TT_NONE.
*/
const HParser* h_optional(const HParser* p);
/**
* Given a parser, p, this parser succeeds if p succeeds, but doesn't
* include p's result in the result.
*
* Result token type: None. The HParseResult exists but its AST is NULL.
*/
const HParser* h_ignore(const HParser* p);
/**
* Given a parser, p, and a parser for a separator, sep, this parser
* matches a (possibly empty) list of things that p can parse,
* separated by sep.
* For example, if p is repeat1(range('0','9')) and sep is ch(','),
* sepBy(p, sep) will match a comma-separated list of integers.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_sepBy(const HParser* p, const HParser* sep);
/**
* Given a parser, p, and a parser for a separator, sep, this parser matches a list of things that p can parse, separated by sep. Unlike sepBy, this ensures that the result has at least one element.
* For example, if p is repeat1(range('0','9')) and sep is ch(','), sepBy1(p, sep) will match a comma-separated list of integers.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_sepBy1(const HParser* p, const HParser* sep);
/**
* This parser always returns a zero length match, i.e., empty string.
*
* Result token type: None. The HParseResult exists but its AST is NULL.
*/
const HParser* h_epsilon_p();
/**
* This parser applies its first argument to read an unsigned integer
* value, then applies its second argument that many times. length
* should parse an unsigned integer value; this is checked at runtime.
* Specifically, the token_type of the returned token must be TT_UINT.
* In future we might relax this to include TT_USER but don't count on it.
*
* Result token type: TT_SEQUENCE
*/
const HParser* h_length_value(const HParser* length, const HParser* value);
/**
* This parser attaches a predicate function, which returns true or
* false, to a parser. The function is evaluated over the parser's
* result.
*
* The parse only succeeds if the attribute function returns true.
*
* attr_bool will check whether p's result exists and whether p's
* result AST exists; you do not need to check for this in your
* predicate function.
*
* Result token type: p's result type if pred succeeded, NULL otherwise.
*/
const HParser* h_attr_bool(const HParser* p, HPredicate pred);
/**
* The 'and' parser asserts that a conditional syntax is satisfied,
* but doesn't consume that conditional syntax.
* This is useful for lookahead. As an example:
*
* Suppose you already have a parser, hex_p, that parses numbers in
* hexadecimal format (including the leading '0x'). Then
* sequence(and(token((const uint8_t*)"0x", 2)), hex_p)
* checks to see whether there is a leading "0x", *does not* consume
* the "0x", and then applies hex_p to parse the hex-formatted number.
*
* 'and' succeeds if p succeeds, and fails if p fails.
*
* Result token type: None. The HParseResult exists but its AST is NULL.
*/
const HParser* h_and(const HParser* p);
/**
* The 'not' parser asserts that a conditional syntax is *not*
* satisfied, but doesn't consume that conditional syntax.
* As a somewhat contrived example:
*
* Since 'choice' applies its arguments in order, the following parser:
* sequence(ch('a'), choice(ch('+'), token((const uint8_t*)"++"), NULL), ch('b'), NULL)
* will not parse "a++b", because once choice() has succeeded, it will
* not backtrack and try other alternatives if a later parser in the
* sequence fails.
* Instead, you can force the use of the second alternative by turning
* the ch('+') alternative into a sequence with not:
* sequence(ch('a'), choice(sequence(ch('+'), not(ch('+')), NULL), token((const uint8_t*)"++")), ch('b'), NULL)
* If the input string is "a+b", the first alternative is applied; if
* the input string is "a++b", the second alternative is applied.
*
* Result token type: None. The HParseResult exists but its AST is NULL.
*/
const HParser* h_not(const HParser* p);
/**
* Create a parser that just calls out to another, as yet unknown,
* parser.
* Note that the inner parser gets bound later, with bind_indirect.
* This can be used to create recursive parsers.
*
* Result token type: the type of whatever parser is bound to it with
* bind_indirect().
*/
HParser *h_indirect();
/**
* Set the inner parser of an indirect. See comments on indirect for
* details.
*/
void h_bind_indirect(HParser* indirect, const HParser* inner);
// Some debugging aids
/**
* Format token into a compact unambiguous form. Useful for parser test cases.
* Caller is responsible for freeing the result.
*/
char* h_write_result_unamb(const HParsedToken* tok);
/**
* Format token to the given output stream. Indent starting at
* [indent] spaces, with [delta] spaces between levels.
*/
void h_pprint(FILE* stream, const HParsedToken* tok, int indent, int delta);
#endif // #ifndef HAMMER_HAMMER__H