hammer/src/backends/lr0.c
2013-06-22 17:40:47 +02:00

233 lines
7.1 KiB
C

#include <assert.h>
#include "lr.h"
/* Constructing the characteristic automaton (handle recognizer) */
static HLRItem *advance_mark(HArena *arena, const HLRItem *item)
{
assert(item->rhs[item->mark] != NULL);
HLRItem *ret = h_arena_malloc(arena, sizeof(HLRItem));
*ret = *item;
ret->mark++;
return ret;
}
static void expand_to_closure(HCFGrammar *g, HHashSet *items)
{
HAllocator *mm__ = g->mm__;
HArena *arena = g->arena;
HSlist *work = h_slist_new(arena);
// initialize work list with items
H_FOREACH_KEY(items, HLRItem *item)
h_slist_push(work, (void *)item);
H_END_FOREACH
while(!h_slist_empty(work)) {
const HLRItem *item = h_slist_pop(work);
HCFChoice *sym = item->rhs[item->mark]; // symbol after mark
// if there is a non-terminal after the mark, follow it
// NB: unlike LLk, we do consider HCF_CHARSET a non-terminal here
if(sym != NULL && (sym->type==HCF_CHOICE || sym->type==HCF_CHARSET)) {
// add items corresponding to the productions of sym
if(sym->type == HCF_CHOICE) {
for(HCFSequence **p=sym->seq; *p; p++) {
HLRItem *it = h_lritem_new(arena, sym, (*p)->items, 0);
if(!h_hashset_present(items, it)) {
h_hashset_put(items, it);
h_slist_push(work, it);
}
}
} else { // HCF_CHARSET
for(unsigned int i=0; i<256; i++) {
if(charset_isset(sym->charset, i)) {
// XXX allocate these single-character symbols statically somewhere
HCFChoice **rhs = h_new(HCFChoice *, 2);
rhs[0] = h_new(HCFChoice, 1);
rhs[0]->type = HCF_CHAR;
rhs[0]->chr = i;
rhs[1] = NULL;
HLRItem *it = h_lritem_new(arena, sym, rhs, 0);
h_hashset_put(items, it);
// single-character item needs no further work
}
}
// if sym is a non-terminal, we need a reshape on it
// this seems as good a place as any to set it
sym->reshape = h_act_first;
}
}
}
}
HLRDFA *h_lr0_dfa(HCFGrammar *g)
{
HArena *arena = g->arena;
HHashSet *states = h_hashset_new(arena, h_eq_lr_itemset, h_hash_lr_itemset);
// maps itemsets to assigned array indices
HSlist *transitions = h_slist_new(arena);
// list of states that need to be processed
// to save lookups, we push two elements per state, the itemset and its
// assigned index.
HSlist *work = h_slist_new(arena);
// make initial state (kernel)
HLRState *start = h_lrstate_new(arena);
assert(g->start->type == HCF_CHOICE);
for(HCFSequence **p=g->start->seq; *p; p++)
h_hashset_put(start, h_lritem_new(arena, g->start, (*p)->items, 0));
expand_to_closure(g, start);
h_hashtable_put(states, start, 0);
h_slist_push(work, start);
h_slist_push(work, 0);
// while work to do (on some state)
// determine edge symbols
// for each edge symbol:
// advance respective items -> destination state (kernel)
// compute closure
// if destination is a new state:
// add it to state set
// add transition to it
// add it to the work list
while(!h_slist_empty(work)) {
size_t state_idx = (uintptr_t)h_slist_pop(work);
HLRState *state = h_slist_pop(work);
// maps edge symbols to neighbor states (item sets) of s
HHashTable *neighbors = h_hashtable_new(arena, h_eq_symbol, h_hash_symbol);
// iterate over state (closure) and generate neighboring sets
H_FOREACH_KEY(state, HLRItem *item)
HCFChoice *sym = item->rhs[item->mark]; // symbol after mark
if(sym != NULL) { // mark was not at the end
// find or create prospective neighbor set
HLRState *neighbor = h_hashtable_get(neighbors, sym);
if(neighbor == NULL) {
neighbor = h_lrstate_new(arena);
h_hashtable_put(neighbors, sym, neighbor);
}
// ...and add the advanced item to it
h_hashset_put(neighbor, advance_mark(arena, item));
}
H_END_FOREACH
// merge expanded neighbor sets into the set of existing states
H_FOREACH(neighbors, HCFChoice *symbol, HLRState *neighbor)
expand_to_closure(g, neighbor);
// look up existing state, allocate new if not found
size_t neighbor_idx;
if(!h_hashset_present(states, neighbor)) {
neighbor_idx = states->used;
h_hashtable_put(states, neighbor, (void *)(uintptr_t)neighbor_idx);
h_slist_push(work, neighbor);
h_slist_push(work, (void *)(uintptr_t)neighbor_idx);
} else {
neighbor_idx = (uintptr_t)h_hashtable_get(states, neighbor);
}
// add transition "state --symbol--> neighbor"
HLRTransition *t = h_arena_malloc(arena, sizeof(HLRTransition));
t->from = state_idx;
t->to = neighbor_idx;
t->symbol = symbol;
h_slist_push(transitions, t);
H_END_FOREACH
} // end while(work)
// fill DFA struct
HLRDFA *dfa = h_arena_malloc(arena, sizeof(HLRDFA));
dfa->nstates = states->used;
dfa->states = h_arena_malloc(arena, dfa->nstates*sizeof(HLRState *));
H_FOREACH(states, HLRState *state, void *v)
size_t idx = (uintptr_t)v;
dfa->states[idx] = state;
H_END_FOREACH
dfa->transitions = transitions;
return dfa;
}
/* LR(0) table generation */
static inline
void put_shift(HLRTable *table, size_t state, const HCFChoice *symbol,
size_t nextstate)
{
HLRAction *action = h_shift_action(table->arena, nextstate);
switch(symbol->type) {
case HCF_END:
h_stringmap_put_end(table->tmap[state], action);
break;
case HCF_CHAR:
h_stringmap_put_char(table->tmap[state], symbol->chr, action);
break;
default:
// nonterminal case
h_hashtable_put(table->ntmap[state], symbol, action);
}
}
HLRTable *h_lr0_table(HCFGrammar *g, const HLRDFA *dfa)
{
HAllocator *mm__ = g->mm__;
HLRTable *table = h_lrtable_new(mm__, dfa->nstates);
HArena *arena = table->arena;
// remember start symbol
table->start = g->start;
// shift to the accepting end state for the start symbol
put_shift(table, 0, g->start, HLR_SUCCESS);
// add shift entries
for(HSlistNode *x = dfa->transitions->head; x; x = x->next) {
// for each transition x-A->y, add "shift, goto y" to table entry (x,A)
HLRTransition *t = x->elem;
put_shift(table, t->from, t->symbol, t->to);
}
// add reduce entries, record inadequate states
for(size_t i=0; i<dfa->nstates; i++) {
bool inadeq = false;
// find reducible items in state
H_FOREACH_KEY(dfa->states[i], HLRItem *item)
if(item->mark == item->len) { // mark at the end
HLRAction *reduce = h_reduce_action(arena, item);
// check for reduce/reduce conflict on forall
if(table->forall[i]) {
reduce = h_lr_conflict(arena, table->forall[i], reduce);
inadeq = true;
}
table->forall[i] = reduce;
// check for shift/reduce conflict with other entries
// NOTE: these are not recorded as HLR_CONFLICTs at this point
if(!h_lrtable_row_empty(table, i))
inadeq = true;
}
H_END_FOREACH
if(inadeq)
h_slist_push(table->inadeq, (void *)(uintptr_t)i);
}
return table;
}