hammer/examples/grammar.c
Nicolas Léveillé f9d8f1df7f Reactivate examples that can build on windows
This is proof that Hammer can be linked and used in a windows
program!
2016-01-31 18:11:27 +01:00

180 lines
4.3 KiB
C

// Generates a system of equations for generating functions from a grammar.
//
// (c) 2015 Mikael Vejdemo-Johansson <mikael@johanssons.org>
//
// If a desugared parser has user_data set, the generating function systems will try
// to interpret it as a string:
//
// If this string for an h_ch starts with the character 0, then that character
// will have weight 0 in the generating function.
//
// Use the remaining string to set the preferred name of that parser in the
// generating function.
//
#include <inttypes.h>
#include "../src/backends/contextfree.h"
#include "../src/backends/lr.h"
#include "grammar.h"
#include <stdio.h>
const char *nonterminal_name(const HCFGrammar *g, const HCFChoice *nt) {
// if user_data exists and is printable:
if(nt->user_data != NULL && *(char*)(nt->user_data) > ' ' && *(char*)(nt->user_data) < 127) {
char* user_str = (char*)(nt->user_data);
if(*user_str != '\0') {
// user_data is a non-empty string
return user_str;
} else {
return user_str+1;
}
}
static char buf[16] = {0}; // 14 characters in base 26 are enough for 64 bits
// find nt's number in g
size_t n = (uintptr_t)h_hashtable_get(g->nts, nt);
// NB the start symbol (number 0) is always "A".
int i;
for(i=14; i>=0 && (n>0 || i==14); i--) {
buf[i] = 'A' + n%26;
n = n/26; // shift one digit
}
return buf+i+1;
}
void readsequence(FILE *file, uint32_t *count, uint32_t *length,
const HCFGrammar *g, const HCFSequence *seq) {
// tally up numbers of choices, and lengths of emitted strings.
// Immediately emit any nonterminals encountered.
HCFChoice** x = seq->items;
fprintf(file, "1");
if (*x == NULL) {
// empty sequence
// GF is 1
return;
} else {
char has_user_data = (*x)->user_data != NULL && *(char*)(*x)->user_data != 0;
HCharset cs;
unsigned int i, cscount=0;
for(; *x; x++) {
switch((*x)->type) {
case HCF_CHAR:
if(!(has_user_data && *(char*)(*x)->user_data == '0')) {
(*length)++;
}
break;
case HCF_END:
break;
case HCF_CHARSET:
cs = (*x)->charset;
for(i=0; i<256; i++) {
if (charset_isset(cs, i)) {
cscount++;
}
}
*count *= cscount;
break;
default: // HCF_CHOICE, non-terminal symbol
fprintf(file, "*%s", nonterminal_name(g, *x));
break;
}
}
}
}
// For each nt in g->nts
// For each choice in nt->key->seq
// For all elements in sequence
// Accumulate counts
// Accumulate string lengths
// Emit count*t^length
void h_pprint_gfeqns(FILE *file, const HCFGrammar *g) {
if (g->nts->used < 1) {
return;
}
// determine maximum string length of symbol names
int len;
size_t s;
for(len=1, s=26; s < g->nts->used; len++, s*=26);
// emit the SageMath ring init string
// iterate over g->nts, output symbols
size_t i;
HHashTableEntry *hte;
fprintf(file, "ring.<t");
for(i=0; i < g->nts->capacity; i++) {
for(hte = &g->nts->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
const HCFChoice *nt = hte->key;
fprintf(file, ",");
fprintf(file, "%s", nonterminal_name(g, nt));
}
}
fprintf(file, "> = QQ[]\n");
// iterate over g->nts
// emit a Sage ideal definition
int j=0;
fprintf(file, "ID = ring.ideal(");
for(i=0; i < g->nts->capacity; i++) {
for(hte = &g->nts->contents[i]; hte; hte = hte->next) {
if (hte->key == NULL) {
continue;
}
if(j>0) {
fprintf(file, ",");
}
j++;
const HCFChoice *nt = hte->key;
const char *ntn = nonterminal_name(g, nt);
if(*ntn == 0) {
continue;
}
fprintf(file, "%s - (", ntn);
for(HCFSequence **seq = nt->seq; *seq; seq++) {
if (seq != nt->seq) {
fprintf(file, " + ");
}
uint32_t count=1, length=0;
readsequence(file, &count, &length, g, *seq);
if(count == 1) {
if(length == 1) {
fprintf(file, "*t");
}
if(length > 1) {
fprintf(file, "*t^%d", length);
}
} else if(count > 1) {
if(length == 0) {
fprintf(file, "*%d", count);
}
if(length == 1) {
fprintf(file, "*%d*t", count);
}
if (length > 1) {
fprintf(file, "*%d*t^%d", count, length);
}
}
}
fprintf(file, ")");
}
}
fprintf(file, ")\n");
}