#include #include "../internal.h" #include "../cfgrammar.h" #include "../parsers/parser_internal.h" /* Generating the LL(k) parse table */ /* Maps each nonterminal (HCFChoice) of the grammar to a HCFStringMap that * maps lookahead strings to productions (HCFSequence). */ typedef struct HLLkTable_ { HHashTable *rows; HCFChoice *start; // start symbol HArena *arena; HAllocator *mm__; } HLLkTable; // XXX adaptation to LL(1), to be removed typedef HCharKey HCFToken; static const HCFToken end_token = 0x200; #define char_token char_key /* Interface to look up an entry in the parse table. */ const HCFSequence *h_llk_lookup(const HLLkTable *table, const HCFChoice *x, HInputStream lookahead) { const HCFStringMap *row = h_hashtable_get(table->rows, x); assert(row != NULL); // the table should have one row for each nonterminal assert(!row->epsilon_branch); // would match without looking at the input // XXX cases where this could be useful? const HCFStringMap *m = row; while(m) { if(m->epsilon_branch) { // input matched // assert: another lookahead would not bring a more specific match. // this is for the table generator to ensure. return m->epsilon_branch; } // note the lookahead stream is passed by value, i.e. a copy. // reading bits from it does not consume them from the real input. uint8_t c = h_read_bits(&lookahead, 8, false); if(lookahead.overrun) { // end of input // XXX assumption of byte-wise grammar and input return m->end_branch; } // no match yet, descend m = h_stringmap_get_char(m, c); } return NULL; } /* Allocate a new parse table. */ HLLkTable *h_llktable_new(HAllocator *mm__) { // NB the parse table gets an arena separate from the grammar so we can free // the latter after table generation. HArena *arena = h_new_arena(mm__, 0); // default blocksize assert(arena != NULL); HHashTable *rows = h_hashtable_new(arena, h_eq_ptr, h_hash_ptr); assert(rows != NULL); HLLkTable *table = h_new(HLLkTable, 1); assert(table != NULL); table->mm__ = mm__; table->arena = arena; table->rows = rows; return table; } void h_llktable_free(HLLkTable *table) { if(table == NULL) return; HAllocator *mm__ = table->mm__; h_delete_arena(table->arena); h_free(table); } /* Compute the predict_k set of production "A -> rhs". * Always returns a newly-allocated HCFStringMap. */ HCFStringMap *h_predict(size_t k, HCFGrammar *g, const HCFChoice *A, const HCFSequence *rhs) { assert(k==1); // XXX HCFStringMap *ret = h_stringmap_new(g->arena); // predict(A -> rhs) = first(rhs) u follow(A) if "" can be derived from rhs // predict(A -> rhs) = first(rhs) otherwise h_stringmap_update(ret, h_first_seq(k, g, rhs->items)); if(h_derives_epsilon_seq(g, rhs->items)) h_stringmap_update(ret, h_follow(k, g, A)); // make sure there are only strings of length _exactly_ k ret->epsilon_branch = NULL; return ret; } void *const CONFLICT = (void *)(uintptr_t)(-1); // helper for stringmap_merge static void *combine_entries(HHashSet *workset, void *dst, const void *src) { assert(dst != NULL); assert(src != NULL); if(dst == CONFLICT) { // previous conflict h_hashset_put(workset, src); } else if(dst != src) { // new conflict h_hashset_put(workset, dst); h_hashset_put(workset, src); dst = CONFLICT; } return dst; } // add the mappings of src to dst, marking conflicts and adding the conflicting // values to workset. // note: reuses parts of src to build dst! static void stringmap_merge(HHashSet *workset, HCFStringMap *dst, HCFStringMap *src) { if(src->epsilon_branch) { if(dst->epsilon_branch) dst->epsilon_branch = combine_entries(workset, dst->epsilon_branch, src->epsilon_branch); else dst->epsilon_branch = src->epsilon_branch; } if(src->end_branch) { if(dst->end_branch) dst->end_branch = combine_entries(workset, dst->end_branch, src->end_branch); else dst->end_branch = src->end_branch; } // iterate over src->char_branches const HHashTable *ht = src->char_branches; for(size_t i=0; i < ht->capacity; i++) { for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) { if(hte->key == NULL) continue; HCharKey c = (HCharKey)hte->key; HCFStringMap *src_ = hte->value; if(src_) { HCFStringMap *dst_ = h_hashtable_get(dst->char_branches, (void *)c); if(dst_) stringmap_merge(workset, dst_, src_); else dst_ = src_; } } } } /* Generate entries for the production "A" in the given table row. */ static int fill_table_row(size_t kmax, HCFGrammar *g, HCFStringMap *row, const HCFChoice *A) { HHashSet *workset; // initialize working set to the productions of A workset = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr); for(HCFSequence **s = A->seq; *s; s++) h_hashset_put(workset, *s); // run until workset exhausted or kmax hit size_t k; for(k=1; k<=kmax; k++) { // allocate a fresh workset for the next round HHashSet *nextset = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr); // iterate over the productions in workset... const HHashTable *ht = workset; for(size_t i=0; i < ht->capacity; i++) { for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) { if(hte->key == NULL) continue; HCFSequence *rhs = (void *)hte->key; assert(rhs != NULL); assert(rhs != CONFLICT); // just to be sure there's no mixup // calculate predict set; let values map to rhs HCFStringMap *pred = h_predict(k, g, A, rhs); h_stringmap_replace(pred, NULL, rhs); // merge predict set into the row // accumulates conflicts in new workset stringmap_merge(nextset, row, pred); } } // switch to the updated workset h_hashtable_free(workset); workset = nextset; // if the workset is empty, row is without conflict; we're done if(h_hashset_empty(workset)) break; // clear conflict markers for next iteration h_stringmap_replace(row, CONFLICT, NULL); } h_hashset_free(workset); return (k>kmax)? -1 : 0; } /* Generate the LL(k) parse table from the given grammar. * Returns -1 on error, 0 on success. */ static int fill_table(size_t kmax, HCFGrammar *g, HLLkTable *table) { table->start = g->start; // iterate over g->nts size_t i; HHashTableEntry *hte; for(i=0; i < g->nts->capacity; i++) { for(hte = &g->nts->contents[i]; hte; hte = hte->next) { if(hte->key == NULL) continue; const HCFChoice *a = hte->key; // production's left-hand symbol assert(a->type == HCF_CHOICE); // create table row for this nonterminal HCFStringMap *row = h_stringmap_new(table->arena); h_hashtable_put(table->rows, a, row); if(fill_table_row(kmax, g, row, a) < 0) { // unresolvable conflicts in row // NB we don't worry about deallocating anything, h_llk_compile will // delete the whole arena for us. return -1; } } } return 0; } static const size_t DEFAULT_KMAX = 1; int h_llk_compile(HAllocator* mm__, HParser* parser, const void* params) { size_t kmax = params? (uintptr_t)params : DEFAULT_KMAX; assert(kmax>0); // Convert parser to a CFG. This can fail as indicated by a NULL return. HCFGrammar *grammar = h_cfgrammar(mm__, parser); if(grammar == NULL) return -1; // -> Backend unsuitable for this parser. // TODO: eliminate common prefixes // TODO: eliminate left recursion // TODO: avoid conflicts by splitting occurances? // generate table and store in parser->backend_data. HLLkTable *table = h_llktable_new(mm__); if(fill_table(kmax, grammar, table) < 0) { // the table was ambiguous h_cfgrammar_free(grammar); h_llktable_free(table); return -1; } parser->backend_data = table; // free grammar and its arena. // desugared parsers (HCFChoice and HCFSequence) are unaffected by this. h_cfgrammar_free(grammar); return 0; } void h_llk_free(HParser *parser) { HLLkTable *table = parser->backend_data; h_llktable_free(table); parser->backend_data = NULL; parser->backend = PB_PACKRAT; } /* LL(k) driver */ HParseResult *h_llk_parse(HAllocator* mm__, const HParser* parser, HInputStream* stream) { const HLLkTable *table = parser->backend_data; assert(table != NULL); HArena *arena = h_new_arena(mm__, 0); // will hold the results HArena *tarena = h_new_arena(mm__, 0); // tmp, deleted after parse HSlist *stack = h_slist_new(tarena); HCountedArray *seq = h_carray_new(arena); // accumulates current parse result // in order to construct the parse tree, we delimit the symbol stack into // frames corresponding to production right-hand sides. since only left-most // derivations are produced this linearization is unique. // the 'mark' allocated below simply reserves a memory address to use as the // frame delimiter. // nonterminals, instead of being popped and forgotten, are put back onto the // stack below the mark to tell us which validations and semantic actions to // execute on their corresponding result. // also on the stack below the mark, we store the previously accumulated // value for the surrounding production. void *mark = h_arena_malloc(tarena, 1); // initialize with the start symbol on the stack. h_slist_push(stack, table->start); // when we empty the stack, the parse is complete. while(!h_slist_empty(stack)) { // pop top of stack for inspection HCFChoice *x = h_slist_pop(stack); assert(x != NULL); if(x != mark && x->type == HCF_CHOICE) { // x is a nonterminal; apply the appropriate production and continue // push stack frame h_slist_push(stack, seq); // save current partial value h_slist_push(stack, x); // save the nonterminal h_slist_push(stack, mark); // frame delimiter // open a fresh result sequence seq = h_carray_new(arena); // look up applicable production in parse table const HCFSequence *p = h_llk_lookup(table, x, *stream); if(p == NULL) goto no_parse; // push production's rhs onto the stack (in reverse order) HCFChoice **s; for(s = p->items; *s; s++); for(s--; s >= p->items; s--) h_slist_push(stack, *s); continue; // no result to record } // the top of stack is such that there will be a result... HParsedToken *tok; // will hold result token if(x == mark) { // hit stack frame boundary... // wrap the accumulated parse result, this sequence is finished tok = h_arena_malloc(arena, sizeof(HParsedToken)); tok->token_type = TT_SEQUENCE; tok->seq = seq; // recover original nonterminal and result sequence x = h_slist_pop(stack); seq = h_slist_pop(stack); // tok becomes next left-most element of higher-level sequence } else { // x is a terminal or simple charset; match against input // consume the input token uint8_t input = h_read_bits(stream, 8, false); switch(x->type) { case HCF_END: if(!stream->overrun) goto no_parse; tok = NULL; break; case HCF_CHAR: if(input != x->chr) goto no_parse; tok = h_arena_malloc(arena, sizeof(HParsedToken)); tok->token_type = TT_UINT; tok->uint = x->chr; break; case HCF_CHARSET: if(stream->overrun) goto no_parse; if(!charset_isset(x->charset, input)) goto no_parse; tok = h_arena_malloc(arena, sizeof(HParsedToken)); tok->token_type = TT_UINT; tok->uint = input; break; default: // should not be reached assert_message(0, "unknown HCFChoice type"); goto no_parse; } } // 'tok' has been parsed; process it // XXX set tok->index and tok->bit_offset (don't take directly from stream, cuz peek!) // perform token reshape if indicated if(x->reshape) tok = (HParsedToken *)x->reshape(make_result(arena, tok)); // call validation and semantic action, if present if(x->pred && !x->pred(make_result(tarena, tok))) goto no_parse; // validation failed -> no parse if(x->action) tok = (HParsedToken *)x->action(make_result(arena, tok)); // append to result sequence h_carray_append(seq, tok); } // since we started with a single nonterminal on the stack, seq should // contain exactly the parse result. assert(seq->used == 1); h_delete_arena(tarena); return make_result(arena, seq->elements[0]); no_parse: h_delete_arena(tarena); h_delete_arena(arena); return NULL; } HParserBackendVTable h__llk_backend_vtable = { .compile = h_llk_compile, .parse = h_llk_parse, .free = h_llk_free }; // dummy! int test_llk(void) { /* for k=2: S -> A | B A -> X Y a B -> Y b X -> x | '' Y -> y -- for k=3 use "yy" */ HParser *X = h_optional(h_ch('x')); HParser *Y = h_epsilon_p(); //h_sequence(h_ch('y'), NULL); HParser *A = h_sequence(X, Y, h_ch('a'), NULL); HParser *B = h_sequence(Y, h_ch('b'), NULL); HParser *p = h_choice(A, B, NULL); HCFGrammar *g = h_cfgrammar(&system_allocator, p); if(g == NULL) { fprintf(stderr, "h_cfgrammar failed\n"); return 1; } h_pprint_grammar(stdout, g, 0); printf("derive epsilon: "); h_pprint_symbolset(stdout, g, g->geneps, 0); printf("first(A) = "); h_pprint_stringset(stdout, g, h_first(3, g, g->start), 0); //printf("follow(C) = "); //h_pprint_stringset(stdout, g, h_follow(3, g, h_desugar(&system_allocator, c)), 0); if(h_compile(p, PB_LLk, NULL)) { fprintf(stderr, "does not compile\n"); return 2; } HParseResult *res = h_parse(p, (uint8_t *)"xa", 2); if(res) h_pprint(stdout, res->ast, 0, 2); else printf("no parse\n"); return 0; }