/* Parser combinators for binary formats. * Copyright (C) 2012 Meredith L. Patterson, Dan "TQ" Hirsch * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "hammer.h" #include "internal.h" #include #include #include parse_state_t* from(parse_state_t *ps, const size_t index) { parse_state_t *ret = g_new(parse_state_t, 1); *ret = *ps; ret->input_stream.index += index; return ret; } const uint8_t* substring(const parse_state_t *ps, const size_t start, const size_t end) { if (end > start && (ps->input_stream.index + end) < ps->input_stream.length) { gpointer ret = g_malloc(end - start); memcpy(ret, ps->input_stream.input, end - start); return (const uint8_t*)ret; } else { return NULL; } } const GVariant* at(parse_state_t *ps, const size_t index) { GVariant *ret = NULL; if (index + ps->input_stream.index < ps->input_stream.length) ret = g_variant_new_byte((ps->input_stream.input)[index + ps->input_stream.index]); return g_variant_new_maybe(G_VARIANT_TYPE_BYTE, ret); } const gchar* to_string(parse_state_t *ps) { return g_strescape((const gchar*)(ps->input_stream.input), NULL); } guint djbhash(const uint8_t *buf, size_t len) { guint hash = 5381; while (len--) { hash = hash * 33 + *buf++; } return hash; } parse_result_t* do_parse(const parser_t* parser, parse_state_t *state) { // TODO(thequux): add caching here. parser_cache_key_t key = { .input_pos = state->input_stream, .parser = parser }; // check to see if there is already a result for this object... if (g_hash_table_contains(state->cache, &key)) { // it exists! // TODO(thequux): handle left recursion case return g_hash_table_lookup(state->cache, &key); } else { // It doesn't exist... run the parse_result_t *res; if (parser) res = parser->fn(parser->env, state); else res = NULL; if (state->input_stream.overrun) res = NULL; // overrun is always failure. // update the cache g_hash_table_replace(state->cache, &key, res); #ifdef CONSISTENCY_CHECK if (!res) { state->input_stream = INVALID; state->input_stream.input = key.input_pos.input; } #endif return res; } } /* Helper function, since these lines appear in every parser */ parse_result_t* make_result(parsed_token_t *tok) { parse_result_t *ret = g_new(parse_result_t, 1); ret->ast = tok; return ret; } typedef struct { uint8_t *str; uint8_t len; } token_t; static parse_result_t* parse_token(void *env, parse_state_t *state) { token_t *t = (token_t*)env; for (int i=0; ilen; ++i) { uint8_t chr = (uint8_t)read_bits(&state->input_stream, 8, false); if (t->str[i] != chr) { return NULL; } } parsed_token_t *tok = g_new(parsed_token_t, 1); tok->token_type = TT_BYTES; tok->bytes.token = t->str; tok->bytes.len = t->len; return make_result(tok); } const parser_t* token(const uint8_t *str, const size_t len) { token_t *t = g_new(token_t, 1); t->str = (uint8_t*)str, t->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_token; ret->env = t; return (const parser_t*)ret; } static parse_result_t* parse_ch(void* env, parse_state_t *state) { uint8_t c = (uint8_t)GPOINTER_TO_UINT(env); uint8_t r = (uint8_t)read_bits(&state->input_stream, 8, false); if (c == r) { parsed_token_t *tok = g_new(parsed_token_t, 1); tok->token_type = TT_UINT; tok->uint = r; return make_result(tok); } else { return NULL; } } const parser_t* ch(const uint8_t c) { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_ch; ret->env = GUINT_TO_POINTER(c); return (const parser_t*)ret; } typedef struct { uint8_t lower; uint8_t upper; } range_t; const parser_t* whitespace(const parser_t* p) { return NULL; } //const parser_t* action(const parser_t* p, /* fptr to action on AST */) { return NULL; } const parser_t* left_factor_action(const parser_t* p) { return NULL; } static parse_result_t* parse_charset(void *env, parse_state_t *state) { uint8_t in = read_bits(&state->input_stream, 8, false); charset cs = (charset)env; if (charset_isset(cs, in)) { parsed_token_t *tok = g_new(parsed_token_t, 1); tok->token_type = TT_UINT; tok->uint = in; return make_result(tok); } else return NULL; } const parser_t* range(const uint8_t lower, const uint8_t upper) { parser_t *ret = g_new(parser_t, 1); charset cs = new_charset(); for (int i = 0; i < 256; i++) charset_set(cs, i, (lower <= i) && (i <= upper)); ret->fn = parse_charset; ret->env = (void*)cs; return (const parser_t*)ret; } const parser_t* not_in(const uint8_t *options, int count) { parser_t *ret = g_new(parser_t, 1); charset cs = new_charset(); for (int i = 0; i < 256; i++) charset_set(cs, i, 1); for (int i = 0; i < count; i++) charset_set(cs, i, 0); ret->fn = parse_charset; ret->env = (void*)cs; return (const parser_t*)ret; } static parse_result_t* parse_end(void *env, parse_state_t *state) { if (state->input_stream.index == state->input_stream.length) { parse_result_t *ret = g_new(parse_result_t, 1); ret->ast = NULL; return ret; } else { return NULL; } } const parser_t* end_p() { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_end; ret->env = NULL; return (const parser_t*)ret; } static parse_result_t* parse_nothing() { // not a mistake, this parser always fails return NULL; } const parser_t* nothing_p() { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_nothing; ret->env = NULL; return (const parser_t*)ret; } typedef struct { size_t len; const parser_t **p_array; } sequence_t; static parse_result_t* parse_sequence(void *env, parse_state_t *state) { sequence_t *s = (sequence_t*)env; GSequence *seq = g_sequence_new(NULL); for (size_t i=0; ilen; ++i) { parse_result_t *tmp = do_parse(s->p_array[i], state); // if the interim parse fails, the whole thing fails if (NULL == tmp) { return NULL; } else { g_sequence_append(seq, tmp); } } parsed_token_t *tok = g_new(parsed_token_t, 1); tok->token_type = TT_SEQUENCE; tok->seq = seq; return make_result(tok); } const parser_t* sequence(const parser_t *p, ...) { va_list ap; size_t len = 0; const parser_t *arg; va_start(ap, p); do { len++; arg = va_arg(ap, const parser_t *); } while (arg); va_end(ap); sequence_t *s = g_new(sequence_t, 1); s->p_array = g_new(const parser_t *, len); va_start(ap, p); s->p_array[0] = p; for (size_t i = 1; i < len; i++) { s->p_array[i] = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_sequence; ret->env = (void*)s; return ret; } static parse_result_t* parse_choice(void *env, parse_state_t *state) { sequence_t *s = (sequence_t*)env; input_stream_t backup = state->input_stream; for (size_t i=0; ilen; ++i) { if (i != 0) state->input_stream = backup; parse_result_t *tmp = do_parse(s->p_array[i], state); if (NULL != tmp) return tmp; } // nothing succeeded, so fail return NULL; } const parser_t* choice(const parser_t* p, ...) { va_list ap; size_t len = 0; sequence_t *s = g_new(sequence_t, 1); const parser_t *arg; va_start(ap, p); do { len++; arg = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->p_array = g_new(const parser_t *, len); va_start(ap, p); s->p_array[0] = p; for (size_t i = 1; i < len; i++) { s->p_array[i] = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_choice; ret->env = (void*)s; return ret; } typedef struct { const parser_t *p1; const parser_t *p2; } two_parsers_t; void accumulate_size(gpointer pr, gpointer acc) { size_t tmp = GPOINTER_TO_SIZE(acc); if (NULL != ((parse_result_t*)pr)->ast) { switch(((parse_result_t*)pr)->ast->token_type) { case TT_BYTES: tmp += ((parse_result_t*)pr)->ast->bytes.len; acc = GSIZE_TO_POINTER(tmp); break; case TT_SINT: case TT_UINT: tmp += 8; acc = GSIZE_TO_POINTER(tmp); break; case TT_SEQUENCE: g_sequence_foreach(((parse_result_t*)pr)->ast->seq, accumulate_size, acc); break; default: break; } } // no else, if the AST is null then acc doesn't change } size_t token_length(parse_result_t *pr) { size_t ret = 0; if (NULL == pr) { return ret; } else { accumulate_size(pr, GSIZE_TO_POINTER(ret)); } return ret; } static parse_result_t* parse_butnot(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); // if p1 failed, bail out early if (NULL == r1) { return NULL; } // cache the state after parse #1, since we might have to back up to it input_stream_t after_p1_state = state->input_stream; state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); // TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases state->input_stream = after_p1_state; // if p2 failed, restore post-p1 state and bail out early if (NULL == r2) { return r1; } size_t r1len = token_length(r1); size_t r2len = token_length(r2); // if both match but p1's text is longer than p2's, fail if (r1len > r2len) { return NULL; } else { return r1; } } const parser_t* butnot(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_butnot; ret->env = (void*)env; return ret; } static parse_result_t* parse_difference(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); // if p1 failed, bail out early if (NULL == r1) { return NULL; } // cache the state after parse #1, since we might have to back up to it input_stream_t after_p1_state = state->input_stream; state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); // TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases state->input_stream = after_p1_state; // if p2 failed, restore post-p1 state and bail out early if (NULL == r2) { return r1; } size_t r1len = token_length(r1); size_t r2len = token_length(r2); // if both match but p1's text is shorter than p2's, fail if (r1len < r2len) { return NULL; } else { return r1; } } const parser_t* difference(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_difference; ret->env = (void*)env; return ret; } static parse_result_t* parse_xor(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); input_stream_t after_p1_state = state->input_stream; // reset input stream, parse again state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); if (NULL == r1) { if (NULL != r2) { return r2; } else { return NULL; } } else { if (NULL == r2) { state->input_stream = after_p1_state; return r1; } else { return NULL; } } } const parser_t* xor(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_xor; ret->env = (void*)env; return ret; } const parser_t* repeat0(const parser_t* p) { return NULL; } const parser_t* repeat1(const parser_t* p) { return NULL; } const parser_t* repeat_n(const parser_t* p, const size_t n) { return NULL; } const parser_t* optional(const parser_t* p) { return NULL; } const parser_t* expect(const parser_t* p) { return NULL; } const parser_t* chain(const parser_t* p1, const parser_t* p2, const parser_t* p3) { return NULL; } const parser_t* chainl(const parser_t* p1, const parser_t* p2) { return NULL; } const parser_t* list(const parser_t* p1, const parser_t* p2) { return NULL; } const parser_t* epsilon_p() { return NULL; } //const parser_t* semantic(/* fptr to nullary function? */) { return NULL; } const parser_t* and(const parser_t* p) { return NULL; } const parser_t* not(const parser_t* p) { return NULL; } static guint cache_key_hash(gconstpointer key) { return djbhash(key, sizeof(parser_cache_key_t)); } static gboolean cache_key_equal(gconstpointer key1, gconstpointer key2) { return memcmp(key1, key2, sizeof(parser_cache_key_t)) == 0; } parse_result_t* parse(const parser_t* parser, const uint8_t* input, size_t length) { // Set up a parse state... parse_state_t *parse_state = g_new0(parse_state_t, 1); parse_state->cache = g_hash_table_new(cache_key_hash, // hash_func cache_key_equal);// key_equal_func parse_state->input_stream.input = input; parse_state->input_stream.bit_offset = 8; // bit big endian parse_state->input_stream.endianness = BIT_BIG_ENDIAN | BYTE_BIG_ENDIAN; parse_state->input_stream.length = length; parse_result_t *res = do_parse(parser, parse_state); // tear down the parse state. For now, leak like a sieve. // BUG: Leaks like a sieve. // TODO(thequux): Pull in the arena allocator. g_hash_table_destroy(parse_state->cache); return res; } #ifdef INCLUDE_TESTS #include "test_suite.h" static void test_token(void) { uint8_t test1[3] = { '9', '5', 0xa2 }; uint8_t test2[2] = { '9', '5' }; const parser_t *token_ = token(test1 , 3); parse_result_t *ret1 = parse(token_, test1, 3); parse_result_t *ret2 = parse(token_, test2, 2); g_check_bytes(ret1->ast->bytes.len, (ret1->ast)[0].bytes.token, ==, test1); g_check_failed(ret2); } static void test_ch(void) { uint8_t test1[1] = { 0xa2 }; uint8_t test2[1] = { 0xa3 }; const parser_t *ch_ = ch(0xa2); parse_result_t *ret1 = parse(ch_, test1 , 1); parse_result_t *ret2 = parse(ch_, test2, 1); g_check_cmpint(ret1->ast->uint, ==, 0xa2); g_check_failed(ret2); } static void test_range(void) { uint8_t test1[1] = { 'b' }; uint8_t test2[1] = { 'd' }; const parser_t *range_ = range('a', 'c'); parse_result_t *ret1 = parse(range_, test1, 1); parse_result_t *ret2 = parse(range_, test2, 1); g_check_cmpint(ret1->ast->uint, ==, 'b'); g_check_failed(ret2); } #if 0 static void test_int64(void) { uint8_t test1[8] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00 }; uint8_t test2[7] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00 }; const parser_t *int64_ = int64(); parse_result_t *ret1 = parse(int64_, test1, 8); parse_result_t *ret2 = parse(int64_, test2, 7); g_check_cmplong(ret1->ast->sint, ==, -8589934592L); g_check_failed(ret2); } static void test_int32(void) { uint8_t test1[4] = { 0xff, 0xfe, 0x00, 0x00 }; uint8_t test2[3] = { 0xff, 0xfe, 0x00 }; const parser_t *int32_ = int32(); parse_result_t *ret1 = parse(int32_, test1, 4); parse_result_t *ret2 = parse(int32_, test2, 3); g_check_cmpint(ret1->ast->sint, ==, -131072); g_check_failed(ret2); } static void test_int16(void) { uint8_t test1[2] = { 0xfe, 0x00 }; uint8_t test2[1] = { 0xfe }; const parser_t *int16_ = int16(); parse_result_t *ret1 = parse(int16_, test1, 2); parse_result_t *ret2 = parse(int16_, test2, 1); g_check_cmpint(ret1->ast->sint, ==, -512); g_check_failed(ret2); } static void test_int8(void) { uint8_t test1[1] = { 0x88 }; uint8_t test2[0] = {}; const parser_t *int8_ = int8(); parse_result_t *ret1 = parse(int8_, test1, 1); parse_result_t *ret2 = parse(int8_, test2, 0); g_check_cmpint(ret1->ast->sint, ==, -120); g_check_failed(ret2) } static void test_uint64(void) { uint8_t test1[8] = { 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00 }; uint8_t test2[7] = { 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00 }; const parser_t *uint64_ = uint64(); parse_result_t *ret1 = parse(uint64_, test1, 8); parse_result_t *ret2 = parse(uint64_, test2, 7); g_check_cmpulong(ret1->ast->uint, ==, 8589934592); g_check_failed(ret2); } static void test_uint32(void) { uint8_t test1[4] = { 0x00, 0x02, 0x00, 0x00 }; uint8_t test2[3] = { 0x00, 0x02, 0x00 }; const parser_t *uint32_ = uint32(); parse_result_t *ret1 = parse(uint32_, test1, 4); parse_result_t *ret2 = parse(uint32_, test2, 3); g_check_cmpuint(ret1->ast->uint, ==, 131072); g_check_failed(ret2); } static void test_uint16(void) { uint8_t test1[2] = { 0x02, 0x00 }; uint8_t test2[1] = { 0x02 }; const parser_t *uint16_ = uint16(); parse_result_t *ret1 = parse(uint16_, test1, 2); parse_result_t *ret2 = parse(uint16_, test2, 1); g_check_cmpuint(ret1->ast->uint, ==, 512); g_check_failed(ret2); } static void test_uint8(void) { uint8_t test1[1] = { 0x78 }; uint8_t test2[0] = {}; const parser_t *uint8_ = uint8(); parse_result_t *ret1 = parse(uint8_, test1, 1); parse_result_t *ret2 = parse(uint8_, test2, 0); g_check_cmpuint(ret1->ast->uint, ==, 120); g_check_failed(ret2); } static void test_float64(void) { uint8_t test1[8] = { 0x3f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t test2[7] = { 0x3f, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00 }; const parser_t *float64_ = float64(); parse_result_t *ret1 = parse(float64_, test1, 8); parse_result_t *ret2 = parse(float64_, test2, 7); g_check_cmpdouble(ret1->ast->dbl, ==, 1); g_check_failed(ret2); } static void test_float32(void) { uint8_t test1[4] = { 0x3f, 0x80, 0x00, 0x00 }; uint8_t test2[3] = { 0x3f, 0x80, 0x00 }; const parser_t *float32_ = float32(); parse_result_t *ret1 = parse(float32_, test1, 4); parse_result_t *ret2 = parse(float32_, test2, 3); g_check_cmpfloat(ret1->ast->flt, ==, 1); g_check_failed(ret2); } #endif static void test_whitespace(void) { uint8_t test1[1] = { 'a' }; uint8_t test2[2] = { ' ', 'a' }; uint8_t test3[3] = { ' ', ' ', 'a' }; uint8_t test4[2] = { '\t', 'a' }; uint8_t test5[2] = { '_', 'a' }; const parser_t *whitespace_ = whitespace(ch('a')); parse_result_t *ret1 = parse(whitespace_, test1, 1); parse_result_t *ret2 = parse(whitespace_, test2, 2); parse_result_t *ret3 = parse(whitespace_, test3, 3); parse_result_t *ret4 = parse(whitespace_, test4, 2); parse_result_t *ret5 = parse(whitespace_, test5, 2); g_check_cmpint(ret1->ast->uint, ==, 'a'); g_check_cmpint(ret2->ast->uint, ==, 'a'); g_check_cmpint(ret3->ast->uint, ==, 'a'); g_check_cmpint(ret4->ast->uint, ==, 'a'); g_check_failed(ret5); } static void test_action(void) { } static void test_left_factor_action(void) { } static void test_not_in(void) { uint8_t options[3] = { 'a', 'b', 'c' }; uint8_t test1[1] = { 'd' }; uint8_t test2[1] = { 'a' }; const parser_t *not_in_ = not_in(options, 3); parse_result_t *ret1 = parse(not_in_, test1, 1); parse_result_t *ret2 = parse(not_in_, test2, 1); g_check_cmpint(ret1->ast->uint, ==, 'd'); g_check_failed(ret2); } static void test_end_p(void) { uint8_t test1[1] = { 'a' }; uint8_t test2[2] = { 'a', 'a' }; const parser_t *end_p_ = sequence(ch('a'), end_p(), NULL); parse_result_t *ret1 = parse(end_p_, test1, 1); parse_result_t *ret2 = parse(end_p_, test2, 2); g_check_cmpint(ret1->ast->uint, ==, 'a'); g_check_failed(ret2); } static void test_nothing_p(void) { uint8_t test[1] = { 'a' }; const parser_t *nothing_p_ = nothing_p(); parse_result_t *ret = parse(nothing_p_, test, 1); g_check_failed(ret); } static void test_sequence(void) { const parser_t *sequence_1 = sequence(ch('a'), ch('b'), NULL); const parser_t *sequence_2 = sequence(ch('a'), whitespace(ch('b')), NULL); g_check_parse_ok(sequence_1, "ab", 2, "(<41> <42>)"); g_check_parse_failed(sequence_1, "a", 1); g_check_parse_failed(sequence_1, "b", 1); g_check_parse_ok(sequence_2, "ab", 2, "(<41> <42>)"); g_check_parse_ok(sequence_2, "a b", 3, "(<41> <42>)"); g_check_parse_ok(sequence_2, "a b", 4, "(<41> <42>)"); //g_check_cmpseq(ret1->ast-> } static void test_choice(void) { } static void test_butnot(void) { } static void test_difference(void) { } static void test_xor(void) { } static void test_repeat0(void) { } static void test_repeat1(void) { } static void test_repeat_n(void) { } static void test_optional(void) { } static void test_expect(void) { } static void test_chain(void) { } static void test_chainl(void) { } static void test_list(void) { } static void test_epsilon_p(void) { } static void test_semantic(void) { } static void test_and(void) { } static void test_not(void) { } static void test_ignore(void) { } void register_parser_tests(void) { g_test_add_func("/core/parser/token", test_token); g_test_add_func("/core/parser/ch", test_ch); g_test_add_func("/core/parser/range", test_range); #if 0 g_test_add_func("/core/parser/int64", test_int64); g_test_add_func("/core/parser/int32", test_int32); g_test_add_func("/core/parser/int16", test_int16); g_test_add_func("/core/parser/int8", test_int8); g_test_add_func("/core/parser/uint64", test_uint64); g_test_add_func("/core/parser/uint32", test_uint32); g_test_add_func("/core/parser/uint16", test_uint16); g_test_add_func("/core/parser/uint8", test_uint8); g_test_add_func("/core/parser/float64", test_float64); g_test_add_func("/core/parser/float32", test_float32); #endif g_test_add_func("/core/parser/whitespace", test_whitespace); g_test_add_func("/core/parser/action", test_action); g_test_add_func("/core/parser/left_factor_action", test_left_factor_action); g_test_add_func("/core/parser/not_in", test_not_in); g_test_add_func("/core/parser/end_p", test_end_p); g_test_add_func("/core/parser/nothing_p", test_nothing_p); g_test_add_func("/core/parser/sequence", test_sequence); g_test_add_func("/core/parser/choice", test_choice); g_test_add_func("/core/parser/butnot", test_butnot); g_test_add_func("/core/parser/difference", test_difference); g_test_add_func("/core/parser/xor", test_xor); g_test_add_func("/core/parser/repeat0", test_repeat0); g_test_add_func("/core/parser/repeat1", test_repeat1); g_test_add_func("/core/parser/repeat_n", test_repeat_n); g_test_add_func("/core/parser/optional", test_optional); g_test_add_func("/core/parser/expect", test_expect); g_test_add_func("/core/parser/chain", test_chain); g_test_add_func("/core/parser/chainl", test_chainl); g_test_add_func("/core/parser/list", test_list); g_test_add_func("/core/parser/epsilon_p", test_epsilon_p); g_test_add_func("/core/parser/semantic", test_semantic); g_test_add_func("/core/parser/and", test_and); g_test_add_func("/core/parser/not", test_not); g_test_add_func("/core/parser/ignore", test_ignore); } #endif // #ifdef INCLUDE_TESTS