/* Parser combinators for binary formats. * Copyright (C) 2012 Meredith L. Patterson, Dan "TQ" Hirsch * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, version 2. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "hammer.h" #include "internal.h" #include "allocator.h" #include #include #include #include #include #define a_new_(arena, typ, count) ((typ*)arena_malloc((arena), sizeof(typ)*(count))) #define a_new(typ, count) a_new_(state->arena, typ, count) // we can create a_new0 if necessary. It would allocate some memory and immediately zero it out. guint djbhash(const uint8_t *buf, size_t len) { guint hash = 5381; while (len--) { hash = hash * 33 + *buf++; } return hash; } parser_cache_value_t* recall(parser_cache_key_t *k, parse_state_t *state) { parser_cache_value_t *cached = g_hash_table_lookup(state->cache, k); head_t *head = g_hash_table_lookup(state->recursion_heads, k); if (!head) { // No heads found return cached; } else { // Some heads found if (!cached && head->head_parser != k->parser && !g_slist_find(head->involved_set, k->parser)) { // Nothing in the cache, and the key parser is not involved parse_result_t *tmp = g_new(parse_result_t, 1); tmp->ast = NULL; tmp->arena = state->arena; parser_cache_value_t *ret = g_new(parser_cache_value_t, 1); ret->value_type = PC_RIGHT; ret->right = tmp; return ret; } if (g_slist_find(head->eval_set, k->parser)) { // Something is in the cache, and the key parser is in the eval set. Remove the key parser from the eval set of the head. head->eval_set = g_slist_remove_all(head->eval_set, k->parser); parse_result_t *tmp_res = k->parser->fn(k->parser->env, state); if (tmp_res) tmp_res->arena = state->arena; // we know that cached has an entry here, modify it cached->value_type = PC_RIGHT; cached->right = tmp_res; } return cached; } } /* Setting up the left recursion. We have the LR for the rule head; * we modify the involved_sets of all LRs in the stack, until we * see the current parser again. */ void setupLR(const parser_t *p, GQueue *stack, LR_t *rec_detect) { if (!rec_detect->head) { head_t *some = g_new(head_t, 1); some->head_parser = p; some->involved_set = NULL; some->eval_set = NULL; rec_detect->head = some; } size_t i = 0; LR_t *lr = g_queue_peek_nth(stack, i); while (lr && lr->rule != p) { lr->head = rec_detect->head; lr->head->involved_set = g_slist_prepend(lr->head->involved_set, (gpointer)lr->rule); } } /* If recall() returns NULL, we need to store a dummy failure in the cache and compute the * future parse. */ parse_result_t* grow(parser_cache_key_t *k, parse_state_t *state, head_t *head) { // Store the head into the recursion_heads g_hash_table_replace(state->recursion_heads, k, head); parser_cache_value_t *old_cached = g_hash_table_lookup(state->cache, k); if (!old_cached || PC_LEFT == old_cached->value_type) errx(1, "impossible match"); parse_result_t *old_res = old_cached->right; // reset the eval_set of the head of the recursion at each beginning of growth head->eval_set = head->involved_set; parse_result_t *tmp_res; if (k->parser) { tmp_res = k->parser->fn(k->parser->env, state); if (tmp_res) tmp_res->arena = state->arena; } else tmp_res = NULL; if (tmp_res) { if ((old_res->ast->index < tmp_res->ast->index) || (old_res->ast->index == tmp_res->ast->index && old_res->ast->bit_offset < tmp_res->ast->bit_offset)) { parser_cache_value_t *v = g_new(parser_cache_value_t, 1); v->value_type = PC_RIGHT; v->right = tmp_res; g_hash_table_replace(state->cache, k, v); return grow(k, state, head); } else { // we're done with growing, we can remove data from the recursion head g_hash_table_remove(state->recursion_heads, k); parser_cache_value_t *cached = g_hash_table_lookup(state->cache, k); if (cached && PC_RIGHT == cached->value_type) { return cached->right; } else { errx(1, "impossible match"); } } } else { g_hash_table_remove(state->recursion_heads, k); return old_res; } } parse_result_t* lr_answer(parser_cache_key_t *k, parse_state_t *state, LR_t *growable) { if (growable->head) { if (growable->head->head_parser != k->parser) { // not the head rule, so not growing return growable->seed; } else { // update cache parser_cache_value_t *v = g_new(parser_cache_value_t, 1); v->value_type = PC_RIGHT; v->right = growable->seed; g_hash_table_replace(state->cache, k, v); if (!growable->seed) return NULL; else return grow(k, state, growable->head); } } else { errx(1, "lrAnswer with no head"); } } /* Warth's recursion. Hi Alessandro! */ parse_result_t* do_parse(const parser_t* parser, parse_state_t *state) { parser_cache_key_t *key = a_new(parser_cache_key_t, 1); key->input_pos = state->input_stream; key->parser = parser; parser_cache_value_t *m = recall(key, state); // check to see if there is already a result for this object... if (!m) { // It doesn't exist, so create a dummy result to cache LR_t *base = a_new(LR_t, 1); base->seed = NULL; base->rule = parser; base->head = NULL; g_queue_push_head(state->lr_stack, base); // cache it parser_cache_value_t *dummy = a_new(parser_cache_value_t, 1); dummy->value_type = PC_LEFT; dummy->left = base; g_hash_table_replace(state->cache, key, dummy); // parse the input parse_result_t *tmp_res; if (parser) { tmp_res = parser->fn(parser->env, state); if (tmp_res) tmp_res->arena = state->arena; } else tmp_res = NULL; if (state->input_stream.overrun) return NULL; // overrun is always failure. #ifdef CONSISTENCY_CHECK if (!tmp_res) { state->input_stream = INVALID; state->input_stream.input = key->input_pos.input; } #endif // the base variable has passed equality tests with the cache g_queue_pop_head(state->lr_stack); // setupLR, used below, mutates the LR to have a head if appropriate, so we check to see if we have one if (NULL == base->head) { parser_cache_value_t *right = a_new(parser_cache_value_t, 1); right->value_type = PC_RIGHT; right->right = tmp_res; g_hash_table_replace(state->cache, key, right); return tmp_res; } else { base->seed = tmp_res; parse_result_t *res = lr_answer(key, state, base); return res; } } else { // it exists! if (PC_LEFT == m->value_type) { setupLR(parser, state->lr_stack, m->left); return m->left->seed; // BUG: this might not be correct } else { return m->right; } } } /* Helper function, since these lines appear in every parser */ parse_result_t* make_result(parse_state_t *state, parsed_token_t *tok) { parse_result_t *ret = a_new(parse_result_t, 1); ret->ast = tok; ret->arena = state->arena; return ret; } typedef struct { uint8_t *str; uint8_t len; } token_t; static parse_result_t* parse_unimplemented(void* env, parse_state_t *state) { (void) env; (void) state; static parsed_token_t token = { .token_type = TT_ERR }; static parse_result_t result = { .ast = &token }; return &result; } static parser_t unimplemented = { .fn = parse_unimplemented, .env = NULL }; static parse_result_t* parse_token(void *env, parse_state_t *state) { token_t *t = (token_t*)env; for (int i=0; ilen; ++i) { uint8_t chr = (uint8_t)read_bits(&state->input_stream, 8, false); if (t->str[i] != chr) { return NULL; } } parsed_token_t *tok = a_new(parsed_token_t, 1); tok->token_type = TT_BYTES; tok->bytes.token = t->str; tok->bytes.len = t->len; return make_result(state, tok); } const parser_t* token(const uint8_t *str, const size_t len) { token_t *t = g_new(token_t, 1); t->str = (uint8_t*)str, t->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_token; ret->env = t; return (const parser_t*)ret; } static parse_result_t* parse_ch(void* env, parse_state_t *state) { uint8_t c = (uint8_t)GPOINTER_TO_UINT(env); uint8_t r = (uint8_t)read_bits(&state->input_stream, 8, false); if (c == r) { parsed_token_t *tok = a_new(parsed_token_t, 1); tok->token_type = TT_UINT; tok->uint = r; return make_result(state, tok); } else { return NULL; } } const parser_t* ch(const uint8_t c) { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_ch; ret->env = GUINT_TO_POINTER(c); return (const parser_t*)ret; } typedef struct { uint8_t lower; uint8_t upper; } range_t; static parse_result_t* parse_whitespace(void* env, parse_state_t *state) { char c; input_stream_t bak; do { bak = state->input_stream; c = read_bits(&state->input_stream, 8, false); if (state->input_stream.overrun) return NULL; } while (isspace(c)); state->input_stream = bak; return do_parse((parser_t*)env, state); } const parser_t* whitespace(const parser_t* p) { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_whitespace; ret->env = (void*)p; return ret; } typedef struct { const parser_t *p; action_t action; } parse_action_t; static parse_result_t* parse_action(void *env, parse_state_t *state) { parse_action_t *a = (parse_action_t*)env; if (a->p && a->action) { parse_result_t *ret = a->action(do_parse(a->p, state)); return ret; } else // either the parser's missing or the action's missing return NULL; } const parser_t* action(const parser_t* p, const action_t a) { parser_t *res = g_new(parser_t, 1); res->fn = parse_action; parse_action_t *env = g_new(parse_action_t, 1); env->p = p; env->action = a; res->env = (void*)env; return res; } static parse_result_t* parse_charset(void *env, parse_state_t *state) { uint8_t in = read_bits(&state->input_stream, 8, false); charset cs = (charset)env; if (charset_isset(cs, in)) { parsed_token_t *tok = a_new(parsed_token_t, 1); tok->token_type = TT_UINT; tok->uint = in; return make_result(state, tok); } else return NULL; } const parser_t* range(const uint8_t lower, const uint8_t upper) { parser_t *ret = g_new(parser_t, 1); charset cs = new_charset(); for (int i = 0; i < 256; i++) charset_set(cs, i, (lower <= i) && (i <= upper)); ret->fn = parse_charset; ret->env = (void*)cs; return (const parser_t*)ret; } const parser_t* not_in(const uint8_t *options, int count) { parser_t *ret = g_new(parser_t, 1); charset cs = new_charset(); for (int i = 0; i < 256; i++) charset_set(cs, i, 1); for (int i = 0; i < count; i++) charset_set(cs, options[i], 0); ret->fn = parse_charset; ret->env = (void*)cs; return (const parser_t*)ret; } static parse_result_t* parse_end(void *env, parse_state_t *state) { if (state->input_stream.index == state->input_stream.length) { parse_result_t *ret = a_new(parse_result_t, 1); ret->ast = NULL; return ret; } else { return NULL; } } const parser_t* end_p() { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_end; ret->env = NULL; return (const parser_t*)ret; } static parse_result_t* parse_nothing() { // not a mistake, this parser always fails return NULL; } const parser_t* nothing_p() { parser_t *ret = g_new(parser_t, 1); ret->fn = parse_nothing; ret->env = NULL; return (const parser_t*)ret; } typedef struct { size_t len; const parser_t **p_array; } sequence_t; static parse_result_t* parse_sequence(void *env, parse_state_t *state) { sequence_t *s = (sequence_t*)env; counted_array_t *seq = carray_new_sized(state->arena, (s->len > 0) ? s->len : 4); for (size_t i=0; ilen; ++i) { parse_result_t *tmp = do_parse(s->p_array[i], state); // if the interim parse fails, the whole thing fails if (NULL == tmp) { return NULL; } else { if (tmp->ast) carray_append(seq, (void*)tmp->ast); } } parsed_token_t *tok = a_new(parsed_token_t, 1); tok->token_type = TT_SEQUENCE; tok->seq = seq; return make_result(state, tok); } const parser_t* sequence(const parser_t *p, ...) { va_list ap; size_t len = 0; const parser_t *arg; va_start(ap, p); do { len++; arg = va_arg(ap, const parser_t *); } while (arg); va_end(ap); sequence_t *s = g_new(sequence_t, 1); s->p_array = g_new(const parser_t *, len); va_start(ap, p); s->p_array[0] = p; for (size_t i = 1; i < len; i++) { s->p_array[i] = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_sequence; ret->env = (void*)s; return ret; } static parse_result_t* parse_choice(void *env, parse_state_t *state) { sequence_t *s = (sequence_t*)env; input_stream_t backup = state->input_stream; for (size_t i=0; ilen; ++i) { if (i != 0) state->input_stream = backup; parse_result_t *tmp = do_parse(s->p_array[i], state); if (NULL != tmp) return tmp; } // nothing succeeded, so fail return NULL; } const parser_t* choice(const parser_t* p, ...) { va_list ap; size_t len = 0; sequence_t *s = g_new(sequence_t, 1); const parser_t *arg; va_start(ap, p); do { len++; arg = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->p_array = g_new(const parser_t *, len); va_start(ap, p); s->p_array[0] = p; for (size_t i = 1; i < len; i++) { s->p_array[i] = va_arg(ap, const parser_t *); } while (arg); va_end(ap); s->len = len; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_choice; ret->env = (void*)s; return ret; } typedef struct { const parser_t *p1; const parser_t *p2; } two_parsers_t; size_t accumulate_size(parse_result_t *pr) { if (NULL != ((parse_result_t*)pr)->ast) { switch (pr->ast->token_type) { case TT_BYTES: return pr->ast->bytes.len; case TT_SINT: case TT_UINT: return sizeof(pr->ast->uint); case TT_SEQUENCE: { counted_array_t *arr = pr->ast->seq; size_t ret = 0; for (size_t i = 0; i < arr->used; i++) ret += accumulate_size(arr->elements[i]); return ret; } default: return 0; } } // no else, if the AST is null then acc doesn't change return 0; } size_t token_length(parse_result_t *pr) { if (NULL == pr) { return 0; } else { return accumulate_size(pr); } } static parse_result_t* parse_butnot(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); // if p1 failed, bail out early if (NULL == r1) { return NULL; } // cache the state after parse #1, since we might have to back up to it input_stream_t after_p1_state = state->input_stream; state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); // TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases state->input_stream = after_p1_state; // if p2 failed, restore post-p1 state and bail out early if (NULL == r2) { return r1; } size_t r1len = token_length(r1); size_t r2len = token_length(r2); // if both match but p1's text is as long as or longer than p2's, fail if (r1len >= r2len) { return NULL; } else { return r1; } } const parser_t* butnot(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_butnot; ret->env = (void*)env; return ret; } static parse_result_t* parse_difference(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); // if p1 failed, bail out early if (NULL == r1) { return NULL; } // cache the state after parse #1, since we might have to back up to it input_stream_t after_p1_state = state->input_stream; state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); // TODO(mlp): I'm pretty sure the input stream state should be the post-p1 state in all cases state->input_stream = after_p1_state; // if p2 failed, restore post-p1 state and bail out early if (NULL == r2) { return r1; } size_t r1len = token_length(r1); size_t r2len = token_length(r2); // if both match but p1's text is shorter than p2's, fail if (r1len < r2len) { return NULL; } else { return r1; } } const parser_t* difference(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_difference; ret->env = (void*)env; return ret; } static parse_result_t* parse_xor(void *env, parse_state_t *state) { two_parsers_t *parsers = (two_parsers_t*)env; // cache the initial state of the input stream input_stream_t start_state = state->input_stream; parse_result_t *r1 = do_parse(parsers->p1, state); input_stream_t after_p1_state = state->input_stream; // reset input stream, parse again state->input_stream = start_state; parse_result_t *r2 = do_parse(parsers->p2, state); if (NULL == r1) { if (NULL != r2) { return r2; } else { return NULL; } } else { if (NULL == r2) { state->input_stream = after_p1_state; return r1; } else { return NULL; } } } const parser_t* xor(const parser_t* p1, const parser_t* p2) { two_parsers_t *env = g_new(two_parsers_t, 1); env->p1 = p1; env->p2 = p2; parser_t *ret = g_new(parser_t, 1); ret->fn = parse_xor; ret->env = (void*)env; return ret; } typedef struct { const parser_t *p, *sep; size_t count; bool min_p; } repeat_t; static parse_result_t *parse_many(void* env, parse_state_t *state) { repeat_t *env_ = (repeat_t*) env; counted_array_t *seq = carray_new_sized(state->arena, (env_->count > 0 ? env_->count : 4)); size_t count = 0; input_stream_t bak; while (env_->min_p || env_->count > count) { bak = state->input_stream; if (count > 0) { parse_result_t *sep = do_parse(env_->sep, state); if (!sep) goto err0; } parse_result_t *elem = do_parse(env_->p, state); if (!elem) goto err0; if (elem->ast) carray_append(seq, (void*)elem->ast); count++; } if (count < env_->count) goto err; succ: ; // necessary for the label to be here... parsed_token_t *res = a_new(parsed_token_t, 1); res->token_type = TT_SEQUENCE; res->seq = seq; return make_result(state, res); err0: if (count >= env_->count) { state->input_stream = bak; goto succ; } err: state->input_stream = bak; return NULL; } const parser_t* many(const parser_t* p) { parser_t *res = g_new(parser_t, 1); repeat_t *env = g_new(repeat_t, 1); env->p = p; env->sep = epsilon_p(); env->count = 0; env->min_p = true; res->fn = parse_many; res->env = env; return res; } const parser_t* many1(const parser_t* p) { parser_t *res = g_new(parser_t, 1); repeat_t *env = g_new(repeat_t, 1); env->p = p; env->sep = epsilon_p(); env->count = 1; env->min_p = true; res->fn = parse_many; res->env = env; return res; } const parser_t* repeat_n(const parser_t* p, const size_t n) { parser_t *res = g_new(parser_t, 1); repeat_t *env = g_new(repeat_t, 1); env->p = p; env->sep = epsilon_p(); env->count = n; env->min_p = false; res->fn = parse_many; res->env = env; return res; } static parse_result_t* parse_ignore(void* env, parse_state_t* state) { parse_result_t *res0 = do_parse((parser_t*)env, state); if (!res0) return NULL; parse_result_t *res = a_new(parse_result_t, 1); res->ast = NULL; res->arena = state->arena; return res; } const parser_t* ignore(const parser_t* p) { parser_t* ret = g_new(parser_t, 1); ret->fn = parse_ignore; ret->env = (void*)p; return ret; } static parse_result_t* parse_optional(void* env, parse_state_t* state) { input_stream_t bak = state->input_stream; parse_result_t *res0 = do_parse((parser_t*)env, state); if (res0) return res0; state->input_stream = bak; parsed_token_t *ast = a_new(parsed_token_t, 1); ast->token_type = TT_NONE; return make_result(state, ast); } const parser_t* optional(const parser_t* p) { assert_message(p->fn != parse_ignore, "Thou shalt ignore an option, rather than the other way 'round."); parser_t *ret = g_new(parser_t, 1); ret->fn = parse_optional; ret->env = (void*)p; return ret; } const parser_t* sepBy(const parser_t* p, const parser_t* sep) { parser_t *res = g_new(parser_t, 1); repeat_t *env = g_new(repeat_t, 1); env->p = p; env->sep = sep; env->count = 0; env->min_p = true; res->fn = parse_many; res->env = env; return res; } const parser_t* sepBy1(const parser_t* p, const parser_t* sep) { parser_t *res = g_new(parser_t, 1); repeat_t *env = g_new(repeat_t, 1); env->p = p; env->sep = sep; env->count = 1; env->min_p = true; res->fn = parse_many; res->env = env; return res; } static parse_result_t* parse_epsilon(void* env, parse_state_t* state) { (void)env; parse_result_t* res = a_new(parse_result_t, 1); res->ast = NULL; res->arena = state->arena; return res; } const parser_t* epsilon_p() { parser_t *res = g_new(parser_t, 1); res->fn = parse_epsilon; res->env = NULL; return res; } static parse_result_t* parse_indirect(void* env, parse_state_t* state) { return do_parse(env, state); } void bind_indirect(parser_t* indirect, parser_t* inner) { indirect->env = inner; } parser_t* indirect() { parser_t *res = g_new(parser_t, 1); res->fn = parse_indirect; res->env = NULL; return res; } typedef struct { const parser_t *p; predicate_t pred; } attr_bool_t; static parse_result_t* parse_attr_bool(void *env, parse_state_t *state) { attr_bool_t *a = (attr_bool_t*)env; parse_result_t *res = do_parse(a->p, state); if (res) { if (a->pred(res)) return res; else return NULL; } else return NULL; } const parser_t* attr_bool(const parser_t* p, predicate_t pred) { parser_t *res = g_new(parser_t, 1); res->fn = parse_attr_bool; attr_bool_t *env = g_new(attr_bool_t, 1); env->p = p; env->pred = pred; res->env = (void*)env; return res; } const parser_t* and(const parser_t* p) { return &unimplemented; } static parse_result_t* parse_not(void* env, parse_state_t* state) { input_stream_t bak = state->input_stream; if (do_parse((parser_t*)env, state)) return NULL; else { state->input_stream = bak; return make_result(state, NULL); } } const parser_t* not(const parser_t* p) { parser_t *res = g_new(parser_t, 1); res->fn = parse_not; res->env = (void*)p; return res; } static guint cache_key_hash(gconstpointer key) { return djbhash(key, sizeof(parser_cache_key_t)); } static gboolean cache_key_equal(gconstpointer key1, gconstpointer key2) { return memcmp(key1, key2, sizeof(parser_cache_key_t)) == 0; } parse_result_t* parse(const parser_t* parser, const uint8_t* input, size_t length) { // Set up a parse state... arena_t arena = new_arena(0); parse_state_t *parse_state = a_new_(arena, parse_state_t, 1); parse_state->cache = g_hash_table_new(cache_key_hash, // hash_func cache_key_equal);// key_equal_func parse_state->input_stream.input = input; parse_state->input_stream.index = 0; parse_state->input_stream.bit_offset = 8; // bit big endian parse_state->input_stream.overrun = 0; parse_state->input_stream.endianness = BIT_BIG_ENDIAN | BYTE_BIG_ENDIAN; parse_state->input_stream.length = length; parse_state->lr_stack = g_queue_new(); parse_state->recursion_heads = g_hash_table_new(cache_key_hash, cache_key_equal); parse_state->arena = arena; parse_result_t *res = do_parse(parser, parse_state); g_queue_free(parse_state->lr_stack); g_hash_table_destroy(parse_state->recursion_heads); // tear down the parse state g_hash_table_destroy(parse_state->cache); if (!res) delete_arena(parse_state->arena); return res; } #ifdef INCLUDE_TESTS #include "test_suite.h" static void test_token(void) { const parser_t *token_ = token((const uint8_t*)"95\xa2", 3); g_check_parse_ok(token_, "95\xa2", 3, "<39.35.a2>"); g_check_parse_failed(token_, "95", 2); } static void test_ch(void) { const parser_t *ch_ = ch(0xa2); g_check_parse_ok(ch_, "\xa2", 1, "s0xa2"); g_check_parse_failed(ch_, "\xa3", 1); } static void test_range(void) { const parser_t *range_ = range('a', 'c'); g_check_parse_ok(range_, "b", 1, "s0x62"); g_check_parse_failed(range_, "d", 1); } #if 0 static void test_int64(void) { uint8_t test1[8] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00, 0x00 }; uint8_t test2[7] = { 0xff, 0xff, 0xff, 0xfe, 0x00, 0x00, 0x00 }; const parser_t *int64_ = int64(); g_check_parse_ok(int64_, "\xff\xff\xff\xfe\x00\x00\x00\x00", 8, -8589934592); g_check_parse_failed(int64_, "\xff\xff\xff\xfe\x00\x00\x00", 7); } static void test_int32(void) { const parser_t *int32_ = int32(); g_check_parse_ok(int32_, "\xff\xfe\x00\x00", 4, -131072); g_check_parse_failed(int32_, "\xff\xfe\x00", 3); } static void test_int16(void) { const parser_t *int16_ = int16(); g_check_parse_ok(int16_, "\xfe\x00", 2, -512); g_check_parse_failed(int16_, "\xfe", 1); } static void test_int8(void) { const parser_t *int8_ = int8(); g_check_parse_ok(int8_, "\x88", 1, -120); g_check_parse_failed(int8_, "", 0) } static void test_uint64(void) { const parser_t *uint64_ = uint64(); g_check_parse_ok(uint64_, "\x00\x00\x00\x02\x00\x00\x00\x00", 8, 8589934592); g_check_parse_failed(uint64_, "\x00\x00\x00\x02\x00\x00\x00", 7); } static void test_uint32(void) { const parser_t *uint32_ = uint32(); g_check_parse_ok(uint32_, "\x00\x02\x00\x00", 4, 131072); g_check_parse_failed(uint32_, "\x00\x02\x00", 3) } static void test_uint16(void) { const parser_t *uint16_ = uint16(); g_check_parse_ok(uint16_, "\x02\x00", 2, 512); g_check_parse_failed(uint16_, "\x02", 1); } static void test_uint8(void) { const parser_t *uint8_ = uint8(); g_check_parse_ok(uint8_, "\x78", 1, 120); g_check_parse_failed(uint8_, "", 0); } static void test_float64(void) { const parser_t *float64_ = float64(); g_check_parse_ok(float64_, "\x3f\xf0\x00\x00\x00\x00\x00\x00", 8, 1.0); g_check_parse_failed(float64_, "\x3f\xf0\x00\x00\x00\x00\x00", 7); } static void test_float32(void) { const parser_t *float32_ = float32(); g_check_parse_ok(float32_, "\x3f\x80\x00\x00", 4, 1.0); g_check_parse_failed(float32_, "\x3f\x80\x00"); } #endif static void test_whitespace(void) { const parser_t *whitespace_ = whitespace(ch('a')); g_check_parse_ok(whitespace_, "a", 1, "s0x61"); g_check_parse_ok(whitespace_, " a", 2, "s0x61"); g_check_parse_ok(whitespace_, " a", 3, "s0x61"); g_check_parse_ok(whitespace_, "\ta", 2, "s0x61"); g_check_parse_failed(whitespace_, "_a", 2); } parse_result_t* upcase(parse_result_t *p) { return NULL; // shut compiler up } static void test_action(void) { const parser_t *action_ = action(sequence(choice(ch('a'), ch('A'), NULL), choice(ch('b'), ch('B'), NULL), NULL), upcase); g_check_parse_ok(action_, "ab", 2, "(s0x41, s0x42)"); g_check_parse_ok(action_, "AB", 2, "(s0x41, s0x42)"); } static void test_not_in(void) { uint8_t options[3] = { 'a', 'b', 'c' }; const parser_t *not_in_ = not_in(options, 3); g_check_parse_ok(not_in_, "d", 1, "s0x64"); g_check_parse_failed(not_in_, "a", 1); } static void test_end_p(void) { const parser_t *end_p_ = sequence(ch('a'), end_p(), NULL); g_check_parse_ok(end_p_, "a", 1, "(s0x61)"); g_check_parse_failed(end_p_, "aa", 2); } static void test_nothing_p(void) { uint8_t test[1] = { 'a' }; const parser_t *nothing_p_ = nothing_p(); parse_result_t *ret = parse(nothing_p_, test, 1); g_check_failed(ret); } static void test_sequence(void) { const parser_t *sequence_1 = sequence(ch('a'), ch('b'), NULL); const parser_t *sequence_2 = sequence(ch('a'), whitespace(ch('b')), NULL); g_check_parse_ok(sequence_1, "ab", 2, "(s0x61 s0x62)"); g_check_parse_failed(sequence_1, "a", 1); g_check_parse_failed(sequence_1, "b", 1); g_check_parse_ok(sequence_2, "ab", 2, "(s0x61 s0x62)"); g_check_parse_ok(sequence_2, "a b", 3, "(s0x61 s0x62)"); g_check_parse_ok(sequence_2, "a b", 4, "(s0x61 s0x62)"); } static void test_choice(void) { const parser_t *choice_ = choice(ch('a'), ch('b'), NULL); g_check_parse_ok(choice_, "a", 1, "s0x61"); g_check_parse_ok(choice_, "b", 1, "s0x62"); g_check_parse_failed(choice_, "c", 1); } static void test_butnot(void) { const parser_t *butnot_1 = butnot(ch('a'), token((const uint8_t*)"ab", 2)); const parser_t *butnot_2 = butnot(range('0', '9'), ch('6')); g_check_parse_ok(butnot_1, "a", 1, "s0x61"); g_check_parse_failed(butnot_1, "ab", 2); g_check_parse_ok(butnot_1, "aa", 2, "s0x61"); g_check_parse_failed(butnot_2, "6", 1); } static void test_difference(void) { const parser_t *difference_ = difference(token((const uint8_t*)"ab", 2), ch('a')); g_check_parse_ok(difference_, "ab", 2, "<61.62>"); g_check_parse_failed(difference_, "a", 1); } static void test_xor(void) { const parser_t *xor_ = xor(range('0', '6'), range('5', '9')); g_check_parse_ok(xor_, "0", 1, "s0x30"); g_check_parse_ok(xor_, "9", 1, "s0x39"); g_check_parse_failed(xor_, "5", 1); g_check_parse_failed(xor_, "a", 1); } static void test_many(void) { const parser_t *many_ = many(choice(ch('a'), ch('b'), NULL)); for (int i = 0; i < 10000; i++) { g_check_parse_ok(many_, "adef", 4, "(s0x61)"); g_check_parse_ok(many_, "bdef", 4, "(s0x62)"); g_check_parse_ok(many_, "aabbabadef", 10, "(s0x61 s0x61 s0x62 s0x62 s0x61 s0x62 s0x61)"); g_check_parse_ok(many_, "daabbabadef", 11, "()"); } } static void test_many1(void) { const parser_t *many1_ = many1(choice(ch('a'), ch('b'), NULL)); g_check_parse_ok(many1_, "adef", 4, "(s0x61)"); g_check_parse_ok(many1_, "bdef", 4, "(s0x62)"); g_check_parse_ok(many1_, "aabbabadef", 10, "(s0x61 s0x61 s0x62 s0x62 s0x61 s0x62 s0x61)"); g_check_parse_failed(many1_, "daabbabadef", 11); } static void test_repeat_n(void) { const parser_t *repeat_n_ = repeat_n(choice(ch('a'), ch('b'), NULL), 2); g_check_parse_failed(repeat_n_, "adef", 4); g_check_parse_ok(repeat_n_, "abdef", 5, "(s0x61 s0x62)"); g_check_parse_failed(repeat_n_, "dabdef", 6); } static void test_optional(void) { const parser_t *optional_ = sequence(ch('a'), optional(choice(ch('b'), ch('c'), NULL)), ch('d'), NULL); g_check_parse_ok(optional_, "abd", 3, "(s0x61 s0x62 s0x64)"); g_check_parse_ok(optional_, "acd", 3, "(s0x61 s0x63 s0x64)"); g_check_parse_ok(optional_, "ad", 2, "(s0x61 null s0x64)"); g_check_parse_failed(optional_, "aed", 3); g_check_parse_failed(optional_, "ab", 2); g_check_parse_failed(optional_, "ac", 2); } static void test_ignore(void) { const parser_t *ignore_ = sequence(ch('a'), ignore(ch('b')), ch('c'), NULL); g_check_parse_ok(ignore_, "abc", 3, "(s0x61 s0x63)"); g_check_parse_failed(ignore_, "ac", 2); } static void test_sepBy1(void) { const parser_t *sepBy1_ = sepBy1(choice(ch('1'), ch('2'), ch('3'), NULL), ch(',')); g_check_parse_ok(sepBy1_, "1,2,3", 5, "(s0x31 s0x32 s0x33)"); g_check_parse_ok(sepBy1_, "1,3,2", 5, "(s0x31 s0x33 s0x32)"); g_check_parse_ok(sepBy1_, "1,3", 3, "(s0x31 s0x33)"); g_check_parse_ok(sepBy1_, "3", 1, "(s0x33)"); } static void test_epsilon_p(void) { const parser_t *epsilon_p_1 = sequence(ch('a'), epsilon_p(), ch('b'), NULL); const parser_t *epsilon_p_2 = sequence(epsilon_p(), ch('a'), NULL); const parser_t *epsilon_p_3 = sequence(ch('a'), epsilon_p(), NULL); g_check_parse_ok(epsilon_p_1, "ab", 2, "(s0x61 s0x62)"); g_check_parse_ok(epsilon_p_2, "a", 1, "(s0x61)"); g_check_parse_ok(epsilon_p_3, "a", 1, "(s0x61)"); } static void test_attr_bool(void) { } static void test_and(void) { const parser_t *and_1 = sequence(and(ch('0')), ch('0'), NULL); const parser_t *and_2 = sequence(and(ch('0')), ch('1'), NULL); const parser_t *and_3 = sequence(ch('1'), and(ch('2')), NULL); g_check_parse_ok(and_1, "0", 1, "(s0x30)"); g_check_parse_failed(and_2, "0", 1); g_check_parse_ok(and_3, "12", 2, "(s0x31)"); } static void test_not(void) { const parser_t *not_1 = sequence(ch('a'), choice(ch('+'), token((const uint8_t*)"++", 2), NULL), ch('b'), NULL); const parser_t *not_2 = sequence(ch('a'), choice(sequence(ch('+'), not(ch('+')), NULL), token((const uint8_t*)"++", 2), NULL), ch('b'), NULL); g_check_parse_ok(not_1, "a+b", 3, "(s0x61 s0x2b s0x62)"); g_check_parse_failed(not_1, "a++b", 4); g_check_parse_ok(not_2, "a+b", 3, "(s0x61 (s0x2b) s0x62)"); g_check_parse_ok(not_2, "a++b", 4, "(s0x61 <2b.2b> s0x62)"); } void register_parser_tests(void) { g_test_add_func("/core/parser/token", test_token); g_test_add_func("/core/parser/ch", test_ch); g_test_add_func("/core/parser/range", test_range); #if 0 g_test_add_func("/core/parser/int64", test_int64); g_test_add_func("/core/parser/int32", test_int32); g_test_add_func("/core/parser/int16", test_int16); g_test_add_func("/core/parser/int8", test_int8); g_test_add_func("/core/parser/uint64", test_uint64); g_test_add_func("/core/parser/uint32", test_uint32); g_test_add_func("/core/parser/uint16", test_uint16); g_test_add_func("/core/parser/uint8", test_uint8); g_test_add_func("/core/parser/float64", test_float64); g_test_add_func("/core/parser/float32", test_float32); #endif g_test_add_func("/core/parser/whitespace", test_whitespace); g_test_add_func("/core/parser/action", test_action); g_test_add_func("/core/parser/not_in", test_not_in); g_test_add_func("/core/parser/end_p", test_end_p); g_test_add_func("/core/parser/nothing_p", test_nothing_p); g_test_add_func("/core/parser/sequence", test_sequence); g_test_add_func("/core/parser/choice", test_choice); g_test_add_func("/core/parser/butnot", test_butnot); g_test_add_func("/core/parser/difference", test_difference); g_test_add_func("/core/parser/xor", test_xor); g_test_add_func("/core/parser/many", test_many); g_test_add_func("/core/parser/many1", test_many1); g_test_add_func("/core/parser/repeat_n", test_repeat_n); g_test_add_func("/core/parser/optional", test_optional); g_test_add_func("/core/parser/sepBy1", test_sepBy1); g_test_add_func("/core/parser/epsilon_p", test_epsilon_p); g_test_add_func("/core/parser/attr_bool", test_attr_bool); g_test_add_func("/core/parser/and", test_and); g_test_add_func("/core/parser/not", test_not); g_test_add_func("/core/parser/ignore", test_ignore); } #endif // #ifdef INCLUDE_TESTS