add some docs to glue.h

This commit is contained in:
Sven M. Hallberg 2013-02-01 01:42:10 +01:00
parent 7149260a13
commit e95aef0b09

View file

@ -1,6 +1,25 @@
//
// API additions for writing grammar and semantic actions more concisely
//
//
// Quick Overview:
//
// Grammars can be succinctly specified with the family of H_RULE macros.
// H_RULE defines a plain parser variable. H_ARULE additionally attaches a
// semantic action; H_VRULE attaches a validation. H_AVRULE and H_VARULE
// combine both.
//
// A few standard semantic actions are defined below. The H_ACT_APPLY macro
// allows semantic actions to be defined by "partial application" of
// a generic action to fixed paramters.
//
// The definition of more complex semantic actions will usually consist of
// extracting data from the given parse tree and constructing a token of custom
// type to represent the result. A number of functions and convenience macros
// are provided to capture the most common cases and idioms.
//
// See the leading comment blocks on the sections below for more details.
//
#ifndef HAMMER_EXAMPLES_GLUE__H
#define HAMMER_EXAMPLES_GLUE__H
@ -12,6 +31,29 @@
//
// Grammar specification
//
// H_RULE is simply a short-hand for the typical declaration and definition of
// a parser variable. See its plain definition below. The goal is to save
// horizontal space as well as to provide a clear and unified look together with
// the other macro variants that stays close to an abstract PEG or BNF grammar.
// The latter goal is more specifically enabled by H_ARULE, H_VRULE, and their
// combinations as they allow the definition of syntax to be given without
// intermingling it with the semantic specifications.
//
// H_ARULE defines a variable just like H_RULE but attaches a semantic action
// to the result of the parser via h_action. The action is expected to be
// named act_<rulename>.
//
// H_VRULE is analogous to H_ARULE but attaches a validation via h_attr_bool.
// The validation is expected to be named validate_<rulename>.
//
// H_VARULE combines H_RULE with both an action and a validation. The action is
// attached before the validation, i.e. the validation receives as input the
// result of the action.
//
// H_AVRULE is like H_VARULE but the action is attached outside the validation,
// i.e. the validation receives the uninterpreted AST as input.
//
#define H_RULE(rule, def) const HParser *rule = def
#define H_ARULE(rule, def) const HParser *rule = h_action(def, act_ ## rule)
@ -26,6 +68,25 @@
//
// Pre-fab semantic actions
//
// A collection of generally useful semantic actions is provided.
//
// h_act_ignore is the action equivalent of the parser combinator h_ignore. It
// simply causes the AST it is applied to to be replaced with NULL. This most
// importantly causes it to be elided from the result of a surrounding
// h_sequence.
//
// h_act_index is of note as it is not itself suitable to be passed to
// h_action. It is parameterized by an index to be picked from a sequence
// token. It must be wrapped in a proper HAction to be used. The H_ACT_APPLY
// macro provides a concise way to define such a parameter-application wrapper.
//
// h_act_flatten acts on a token of possibly nested sequences by recursively
// flattening it into a single sequence. Cf. h_seq_flatten below.
//
// H_ACT_APPLY implements "partial application" for semantic actions. It
// defines a new action that supplies given parameters to a parameterized
// action such as h_act_index.
//
const HParsedToken *h_act_ignore(const HParseResult *p);
const HParsedToken *h_act_index(int i, const HParseResult *p);
@ -42,6 +103,68 @@ const HParsedToken *h_act_flatten(const HParseResult *p);
//
// Working with HParsedTokens
//
// The type HParsedToken represents a dynamically-typed universe of values.
// Declared below are constructors to turn ordinary values into their
// HParsedToken equivalents, extractors to retrieve the original values from
// inside an HParsedToken, and functions that inspect and modify tokens of
// sequence type directly.
//
// In addition, there are a number of short-hand macros that work with some
// conventions to eliminate common boilerplate. These conventions are listed
// below. Be sure to follow them if you want to use the respective macros.
//
// * The single argument to semantic actions should be called 'p'.
//
// The H_MAKE macros suppy 'p->arena' to their underlying h_make
// counterparts. The H_FIELD macros supply 'p->ast' to their underlying
// H_INDEX counterparts.
//
// * For each custom token type, there should be a typedef for the
// corresponding value type.
//
// H_CAST, H_INDEX and H_FIELD cast the void * user field of such a token to
// a pointer to the given type.
//
// * For each custom token type, say 'foo_t', there must be an integer
// constant 'TT_foo_t' to identify the token type. This constant must have a
// value greater or equal than TT_USER.
//
// One idiom is to define an enum for all custom token types and to assign a
// value of TT_USER to the first element. This can be viewed as extending
// the HTokenType enum.
//
// The H_MAKE and H_ASSERT macros derive the name of the token type constant
// from the given type name.
//
//
// The H_ALLOC macro is useful for allocating values of custom token types.
//
// The H_MAKE family of macros construct tokens of a given type. The native
// token types are indicated by a corresponding suffix such as in H_MAKE_SEQ.
// The form with no suffix is used for custom token types. This convention is
// also used for other macro and function families.
//
// The H_ASSERT family simply asserts that a given token has the expected type.
// It mainly serves as an implementation aid for H_CAST. Of note in that regard
// is that, unlike the standard 'assert' macro, these form _expressions_ that
// return the value of their token argument; thus they can be used in a
// "pass-through" fashion inside other expressions.
//
// The H_CAST family combines a type assertion with access to the
// statically-typed value inside a token.
//
// A number of functions h_seq_* operate on and inspect sequence tokens.
// Note that H_MAKE_SEQ takes no arguments and constructs an empty sequence.
// Therefore there are h_seq_snoc and h_seq_append to build up sequences.
//
// The macro families H_FIELD and H_INDEX combine index access on a sequence
// with a cast to the appropriate result type. H_FIELD is used to access the
// elements of the argument token 'p' in an action. H_INDEX allows any sequence
// token to be specified. Both macro families take an arbitrary number of index
// arguments, giving access to elements in nested sequences by path.
// These macros are very useful to avoid spaghetti chains of unchecked pointer
// dereferences.
//
// Standard short-hand for arena-allocating a variable in a semantic action.
#define H_ALLOC(TYP) ((TYP *) h_arena_malloc(p->arena, sizeof(TYP)))