Merge pull request #24 from UpstandingHackers/master

Update from trunk
This commit is contained in:
Meredith L. Patterson 2015-03-15 23:29:57 +01:00
commit 8043c7f7b4
26 changed files with 761 additions and 88 deletions

View file

@ -60,6 +60,8 @@ Just `#include <hammer/hammer.h>` (also `#include <hammer/glue.h>` if you plan t
If you've installed Hammer system-wide, you can use `pkg-config` in the usual way.
For documentation, see the [user guide](https://github.com/UpstandingHackers/hammer/wiki/User-guide).
Examples
========
The `examples/` directory contains some simple examples, currently including:

View file

@ -14,7 +14,11 @@ tools = ['default', 'scanreplace']
if 'dotnet' in ARGUMENTS.get('bindings', []):
tools.append('csharp/mono')
env = Environment(ENV = {'PATH' : os.environ['PATH']},
envvars = {'PATH' : os.environ['PATH']}
if 'PKG_CONFIG_PATH' in os.environ:
envvars['PKG_CONFIG_PATH'] = os.environ['PKG_CONFIG_PATH']
env = Environment(ENV = envvars,
variables = vars,
tools=tools,
toolpath=['tools'])

View file

@ -29,9 +29,9 @@ HParsedToken *act_bsfdig(const HParseResult *p, void* user_data)
uint8_t c = H_CAST_UINT(p->ast);
if(c >= 0x40 && c <= 0x5A) // A-Z
if(c >= 0x41 && c <= 0x5A) // A-Z
res->uint = c - 0x41;
else if(c >= 0x60 && c <= 0x7A) // a-z
else if(c >= 0x61 && c <= 0x7A) // a-z
res->uint = c - 0x61 + 26;
else if(c >= 0x30 && c <= 0x39) // 0-9
res->uint = c - 0x30 + 52;

View file

@ -31,9 +31,9 @@ uint8_t bsfdig_value(const HParsedToken *p)
if(p && p->token_type == TT_UINT) {
uint8_t c = p->uint;
if(c >= 0x40 && c <= 0x5A) // A-Z
if(c >= 0x41 && c <= 0x5A) // A-Z
value = c - 0x41;
else if(c >= 0x60 && c <= 0x7A) // a-z
else if(c >= 0x61 && c <= 0x7A) // a-z
value = c - 0x61 + 26;
else if(c >= 0x30 && c <= 0x39) // 0-9
value = c - 0x30 + 52;

View file

@ -22,6 +22,7 @@ parsers = ['parsers/%s.c'%s for s in
['action',
'and',
'attr_bool',
'bind',
'bits',
'butnot',
'ch',
@ -39,11 +40,13 @@ parsers = ['parsers/%s.c'%s for s in
'not',
'nothing',
'optional',
'permutation',
'sequence',
'token',
'unimplemented',
'whitespace',
'xor']]
'xor',
'value']]
backends = ['backends/%s.c' % s for s in
['packrat', 'llk', 'regex', 'glr', 'lalr', 'lr', 'lr0']]
@ -67,7 +70,8 @@ ctests = ['t_benchmark.c',
't_bitwriter.c',
't_parser.c',
't_grammar.c',
't_misc.c']
't_misc.c',
't_regression.c']
libhammer_shared = env.SharedLibrary('hammer', parsers + backends + misc_hammer_parts)
libhammer_static = env.StaticLibrary('hammer', parsers + backends + misc_hammer_parts)

View file

@ -33,11 +33,22 @@ typedef struct HAllocator_ {
typedef struct HArena_ HArena ; // hidden implementation
HArena *h_new_arena(HAllocator* allocator, size_t block_size); // pass 0 for default...
#ifndef SWIG
void* h_arena_malloc(HArena *arena, size_t count) __attribute__(( malloc, alloc_size(2) ));
#if defined __llvm__
# if __has_attribute(malloc)
# define ATTR_MALLOC(n) __attribute__((malloc))
# else
# define ATTR_MALLOC(n)
# endif
#elif defined SWIG
# define ATTR_MALLOC(n)
#elif defined __GNUC__
# define ATTR_MALLOC(n) __attribute__((malloc, alloc_size(2)))
#else
void* h_arena_malloc(HArena *arena, size_t count);
# define ATTR_MALLOC(n)
#endif
void* h_arena_malloc(HArena *arena, size_t count) ATTR_MALLOC(2);
void h_arena_free(HArena *arena, void* ptr); // For future expansion, with alternate memory managers.
void h_delete_arena(HArena *arena);

View file

@ -33,11 +33,13 @@ static inline HParseResult* perform_lowlevel_parse(HParseState *state, const HPa
if (tmp_res) {
tmp_res->arena = state->arena;
if (!state->input_stream.overrun) {
tmp_res->bit_length = ((state->input_stream.index - bak.index) << 3);
if (state->input_stream.endianness & BIT_BIG_ENDIAN)
tmp_res->bit_length += state->input_stream.bit_offset - bak.bit_offset;
else
tmp_res->bit_length += bak.bit_offset - state->input_stream.bit_offset;
size_t bit_length = h_input_stream_pos(&state->input_stream) - h_input_stream_pos(&bak);
if (tmp_res->bit_length == 0) { // Don't modify if forwarding.
tmp_res->bit_length = bit_length;
}
if (tmp_res->ast && tmp_res->ast->bit_length != 0) {
((HParsedToken*)(tmp_res->ast))->bit_length = bit_length;
}
} else
tmp_res->bit_length = 0;
}

View file

@ -1,5 +1,6 @@
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include "hammer.h"
@ -14,6 +15,14 @@
#include <sys/resource.h>
#endif
static const char* HParserBackendNames[] = {
"Packrat",
"Regular",
"LL(k)",
"LALR",
"GLR"
};
void h_benchmark_clock_gettime(struct timespec *ts) {
if (ts == NULL)
return;
@ -112,6 +121,7 @@ HBenchmarkResults *h_benchmark__m(HAllocator* mm__, HParser* parser, HParserTest
ret->results[backend].failed_testcases++;
}
h_parse_result_free(res);
free(res_unamb);
}
if (tc_failed > 0) {

View file

@ -39,10 +39,7 @@ int64_t h_read_bits(HInputStream* state, int count, char signed_p) {
if (bits_left <= 64) { // Large enough to handle any valid count, but small enough that overflow isn't a problem.
// not in danger of overflowing, so add in bits
// add in number of bits...
if (state->endianness & BIT_BIG_ENDIAN)
bits_left = (bits_left << 3) - 8 + state->bit_offset;
else
bits_left = (bits_left << 3) - state->bit_offset;
bits_left = (bits_left << 3) - state->bit_offset - state->margin;
if (bits_left < count) {
if (state->endianness & BYTE_BIG_ENDIAN)
final_shift = count - bits_left;
@ -54,7 +51,7 @@ int64_t h_read_bits(HInputStream* state, int count, char signed_p) {
final_shift = 0;
}
if ((state->bit_offset & 0x7) == 0 && (count & 0x7) == 0) {
if ((state->bit_offset & 0x7) == 0 && (count & 0x7) == 0 && (state->margin == 0)) {
// fast path
if (state->endianness & BYTE_BIG_ENDIAN) {
while (count > 0) {
@ -65,7 +62,7 @@ int64_t h_read_bits(HInputStream* state, int count, char signed_p) {
int i;
for (i = 0; count > 0; i += 8) {
count -= 8;
out |= state->input[state->index++] << i;
out |= (int64_t)state->input[state->index++] << i;
}
}
} else {
@ -73,22 +70,24 @@ int64_t h_read_bits(HInputStream* state, int count, char signed_p) {
int segment, segment_len;
// Read a segment...
if (state->endianness & BIT_BIG_ENDIAN) {
if (count >= state->bit_offset) {
segment_len = state->bit_offset;
state->bit_offset = 8;
segment = state->input[state->index] & ((1 << segment_len) - 1);
state->index++;
} else {
segment_len = count;
state->bit_offset -= count;
segment = (state->input[state->index] >> state->bit_offset) & ((1 << segment_len) - 1);
}
} else { // BIT_LITTLE_ENDIAN
if (count + state->bit_offset >= 8) {
segment_len = 8 - state->bit_offset;
segment = (state->input[state->index] >> state->bit_offset);
if (count + state->bit_offset + state->margin >= 8) {
segment_len = 8 - state->bit_offset - state->margin;
segment = (state->input[state->index] >> state->margin) & ((1 << segment_len) - 1);
state->index++;
state->bit_offset = 0;
state->margin = 0;
} else {
segment_len = count;
state->bit_offset += count;
segment = (state->input[state->index] >> (8 - state->bit_offset)) & ((1 << segment_len) - 1);
}
} else { // BIT_LITTLE_ENDIAN
if (count + state->bit_offset + state->margin >= 8) {
segment_len = 8 - state->bit_offset - state->margin;
segment = (state->input[state->index] >> state->bit_offset) & ((1 << segment_len) - 1);
state->index++;
state->bit_offset = 0;
state->margin = 0;
} else {
segment_len = count;
segment = (state->input[state->index] >> state->bit_offset) & ((1 << segment_len) - 1);
@ -100,7 +99,7 @@ int64_t h_read_bits(HInputStream* state, int count, char signed_p) {
if (state->endianness & BYTE_BIG_ENDIAN) {
out = out << segment_len | segment;
} else { // BYTE_LITTLE_ENDIAN
out |= segment << offset;
out |= (int64_t)segment << offset;
offset += segment_len;
}
count -= segment_len;

View file

@ -1,6 +1,7 @@
#include "internal.h"
#include "hammer.h"
#include "allocator.h"
#include "parsers/parser_internal.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
@ -393,6 +394,28 @@ uint32_t h_djbhash(const uint8_t *buf, size_t len) {
return hash;
}
void h_symbol_put(HParseState *state, const char* key, void *value) {
if (!state->symbol_table) {
state->symbol_table = h_slist_new(state->arena);
h_slist_push(state->symbol_table, h_hashtable_new(state->arena,
h_eq_ptr,
h_hash_ptr));
}
HHashTable *head = h_slist_top(state->symbol_table);
assert(!h_hashtable_present(head, key));
h_hashtable_put(head, key, value);
}
void* h_symbol_get(HParseState *state, const char* key) {
if (state->symbol_table) {
HHashTable *head = h_slist_top(state->symbol_table);
if (head) {
return h_hashtable_get(head, key);
}
}
return NULL;
}
HSArray *h_sarray_new(HAllocator *mm__, size_t size) {
HSArray *ret = h_new(HSArray, 1);
ret->capacity = size;

View file

@ -173,7 +173,7 @@ HParsedToken *h_seq_index_vpath(const HParsedToken *p, size_t i, va_list va)
int j;
while((j = va_arg(va, int)) >= 0)
ret = h_seq_index(p, j);
ret = h_seq_index(ret, j);
return ret;
}

View file

@ -11,7 +11,8 @@
//
// A few standard semantic actions are defined below. The H_ACT_APPLY macro
// allows semantic actions to be defined by "partial application" of
// a generic action to fixed paramters.
// a generic action to fixed paramters. H_VALIDATE_APPLY is similar for
// h_atter_bool.
//
// The definition of more complex semantic actions will usually consist of
// extracting data from the given parse tree and constructing a token of custom
@ -66,13 +67,13 @@
h_attr_bool(h_action(def, act_ ## rule, NULL), validate_ ## rule, NULL)
#define H_AVRULE(rule, def) HParser *rule = \
h_action(h_attr_bool(def, validate_ ## rule, NULL), act_ ## rule, NULL)
#define H_ADRULE(rule, def, data) HParser *rule = \
#define H_ADRULE(rule, def, data) HParser *rule = \
h_action(def, act_ ## rule, data)
#define H_VDRULE(rule, def, data) HParser *rule = \
#define H_VDRULE(rule, def, data) HParser *rule = \
h_attr_bool(def, validate_ ## rule, data)
#define H_VADRULE(rule, def, data) HParser *rule = \
#define H_VADRULE(rule, def, data) HParser *rule = \
h_attr_bool(h_action(def, act_ ## rule, data), validate_ ## rule, data)
#define H_AVDRULE(rule, def, data) HParser *rule = \
#define H_AVDRULE(rule, def, data) HParser *rule = \
h_action(h_attr_bool(def, validate_ ## rule, data), act_ ## rule, data)
@ -109,8 +110,14 @@ HParsedToken *h_act_ignore(const HParseResult *p, void* user_data);
// Define 'myaction' as a specialization of 'paction' by supplying the leading
// parameters.
#define H_ACT_APPLY(myaction, paction, ...) \
HParsedToken *myaction(const HParseResult *p, void* user_data) { \
return paction(__VA_ARGS__, p, user_data); \
HParsedToken *myaction(const HParseResult *p, void* user_data) { \
return paction(__VA_ARGS__, p, user_data); \
}
// Similar, but for validations.
#define H_VALIDATE_APPLY(myvalidation, pvalidation, ...) \
bool myvalidation(HParseResult* p, void* user_data) { \
return pvalidation(__VA_ARGS__, p, user_data); \
}

View file

@ -52,7 +52,7 @@ HParseResult* h_parse__m(HAllocator* mm__, const HParser* parser, const uint8_t*
// Set up a parse state...
HInputStream input_stream = {
.index = 0,
.bit_offset = 8,
.bit_offset = 0,
.overrun = 0,
.endianness = BIT_BIG_ENDIAN | BYTE_BIG_ENDIAN,
.length = length,

View file

@ -46,14 +46,6 @@ typedef enum HParserBackend_ {
PB_MAX = PB_GLR
} HParserBackend;
static const char* HParserBackendNames[] = {
"Packrat",
"Regular",
"LL(k)",
"LALR",
"GLR"
};
typedef enum HTokenType_ {
// Before you change the explicit values of these, think of the poor bindings ;_;
TT_NONE = 1,
@ -107,6 +99,7 @@ typedef struct HParsedToken_ {
HTokenData token_data;
#endif
size_t index;
size_t bit_length;
char bit_offset;
} HParsedToken;
@ -130,6 +123,19 @@ typedef struct HParseResult_ {
*/
typedef struct HBitWriter_ HBitWriter;
typedef struct HCFChoice_ HCFChoice;
typedef struct HRVMProg_ HRVMProg;
typedef struct HParserVtable_ HParserVtable;
// TODO: Make this internal
typedef struct HParser_ {
const HParserVtable *vtable;
HParserBackend backend;
void* backend_data;
void *env;
HCFChoice *desugared; /* if the parser can be desugared, its desugared form */
} HParser;
/**
* Type of an action to apply to an AST, used in the action() parser.
* It can be any (user-defined) function that takes a HParseResult*
@ -149,18 +155,17 @@ typedef HParsedToken* (*HAction)(const HParseResult *p, void* user_data);
*/
typedef bool (*HPredicate)(HParseResult *p, void* user_data);
typedef struct HCFChoice_ HCFChoice;
typedef struct HRVMProg_ HRVMProg;
typedef struct HParserVtable_ HParserVtable;
// TODO: Make this internal
typedef struct HParser_ {
const HParserVtable *vtable;
HParserBackend backend;
void* backend_data;
void *env;
HCFChoice *desugared; /* if the parser can be desugared, its desugared form */
} HParser;
/**
* Type of a parser that depends on the result of a previous parser,
* used in h_bind(). The void* argument is passed through from h_bind() and can
* be used to arbitrarily parameterize the function further.
*
* The HAllocator* argument gives access to temporary memory and is to be used
* for any allocations inside the function. Specifically, construction of any
* HParsers should use the '__m' combinator variants with the given allocator.
* Anything allocated thus will be freed by 'h_bind'.
*/
typedef HParser* (*HContinuation)(HAllocator *mm__, const HParsedToken *x, void *env);
// {{{ Stuff for benchmarking
typedef struct HParserTestcase_ {
@ -437,6 +442,32 @@ HAMMER_FN_DECL_VARARGS_ATTR(__attribute__((sentinel)), HParser*, h_sequence, HPa
*/
HAMMER_FN_DECL_VARARGS_ATTR(__attribute__((sentinel)), HParser*, h_choice, HParser* p);
/**
* Given a null-terminated list of parsers, match a permutation phrase of these
* parsers, i.e. match all parsers exactly once in any order.
*
* If multiple orders would match, the lexically smallest permutation is used;
* in other words, at any step the remaining available parsers are tried in
* the order in which they appear in the arguments.
*
* As an exception, 'h_optional' parsers (actually those that return a result
* of token type TT_NONE) are detected and the algorithm will try to match them
* with a non-empty result. Specifically, a result of TT_NONE is treated as a
* non-match as long as any other argument matches.
*
* Other parsers that succeed on any input (e.g. h_many), that match the same
* input as others, or that match input which is a prefix of another match can
* lead to unexpected results and should probably not be used as arguments.
*
* The result is a sequence of the same length as the argument list.
* Each parser's result is placed at that parser's index in the arguments.
* The permutation itself (the order in which the arguments were matched) is
* not returned.
*
* Result token type: TT_SEQUENCE
*/
HAMMER_FN_DECL_VARARGS_ATTR(__attribute__((sentinel)), HParser*, h_permutation, HParser* p);
/**
* Given two parsers, p1 and p2, this parser succeeds in the following
* cases:
@ -621,6 +652,41 @@ HAMMER_FN_DECL(void, h_bind_indirect, HParser* indirect, const HParser* inner);
*/
HAMMER_FN_DECL(HParser*, h_with_endianness, char endianness, const HParser* p);
/**
* The 'h_put_value' combinator stashes the result of the parser
* it wraps in a symbol table in the parse state, so that non-
* local actions and predicates can access this value.
*
* Try not to use this combinator if you can avoid it.
*
* Result token type: p's token type if name was not already in
* the symbol table. It is an error, and thus a NULL result (and
* parse failure), to attempt to rename a symbol.
*/
HAMMER_FN_DECL(HParser*, h_put_value, const HParser *p, const char* name);
/**
* The 'h_get_value' combinator retrieves a named HParseResult that
* was previously stashed in the parse state.
*
* Try not to use this combinator if you can avoid it.
*
* Result token type: whatever the stashed HParseResult is, if
* present. If absent, NULL (and thus parse failure).
*/
HAMMER_FN_DECL(HParser*, h_get_value, const char* name);
/**
* Monadic bind for HParsers, i.e.:
* Sequencing where later parsers may depend on the result(s) of earlier ones.
*
* Run p and call the result x. Then run k(env,x). Fail if p fails or if
* k(env,x) fails or if k(env,x) is NULL.
*
* Result: the result of k(x,env).
*/
HAMMER_FN_DECL(HParser*, h_bind, const HParser *p, HContinuation k, void *env);
/**
* Free the memory allocated to an HParseResult when it is no longer needed.
*/

View file

@ -70,6 +70,8 @@ typedef struct HInputStream_ {
size_t index;
size_t length;
char bit_offset;
char margin; // The number of bits on the end that is being read
// towards that should be ignored.
char endianness;
char overrun;
} HInputStream;
@ -190,6 +192,7 @@ typedef struct HHashTable_ {
* arena - the arena that has been allocated for the parse this state is in.
* lr_stack - a stack of HLeftRec's, used in Warth's recursion
* recursion_heads - table of recursion heads. Keys are HParserCacheKey's with only an HInputStream (parser can be NULL), values are HRecursionHead's.
* symbol_table - stack of tables of values that have been stashed in the context of this parse.
*
*/
@ -199,6 +202,7 @@ struct HParseState_ {
HArena * arena;
HSlist *lr_stack;
HHashTable *recursion_heads;
HSlist *symbol_table; // its contents are HHashTables
};
typedef struct HParserBackendVTable_ {
@ -293,6 +297,9 @@ extern HParserBackendVTable h__glr_backend_vtable;
// TODO(thequux): Set symbol visibility for these functions so that they aren't exported.
int64_t h_read_bits(HInputStream* state, int count, char signed_p);
static inline size_t h_input_stream_pos(HInputStream* state) {
return state->index * 8 + state->bit_offset + state->margin;
}
// need to decide if we want to make this public.
HParseResult* h_do_parse(const HParser* parser, HParseState *state);
void put_cached(HParseState *ps, const HParser *p, HParseResult *cached);
@ -316,6 +323,7 @@ HSlist* h_slist_new(HArena *arena);
HSlist* h_slist_copy(HSlist *slist);
void* h_slist_pop(HSlist *slist);
void* h_slist_drop(HSlist *slist);
static inline void* h_slist_top(HSlist *sl) { return sl->head->elem; }
void h_slist_push(HSlist *slist, void* item);
bool h_slist_find(HSlist *slist, const void* item);
HSlist* h_slist_remove_all(HSlist *slist, const void* item);
@ -347,8 +355,10 @@ bool h_eq_ptr(const void *p, const void *q);
HHashValue h_hash_ptr(const void *p);
uint32_t h_djbhash(const uint8_t *buf, size_t len);
typedef struct HCFSequence_ HCFSequence;
void h_symbol_put(HParseState *state, const char* key, void *value);
void* h_symbol_get(HParseState *state, const char* key);
typedef struct HCFSequence_ HCFSequence;
struct HCFChoice_ {
enum HCFChoiceType {

81
src/parsers/bind.c Normal file
View file

@ -0,0 +1,81 @@
#include "parser_internal.h"
typedef struct {
const HParser *p;
HContinuation k;
void *env;
HAllocator *mm__;
} BindEnv;
// an HAllocator backed by an HArena
typedef struct {
HAllocator allocator; // inherit XXX is this the proper way to do it?
HArena *arena;
} ArenaAllocator;
static void *aa_alloc(HAllocator *allocator, size_t size)
{
HArena *arena = ((ArenaAllocator *)allocator)->arena;
return h_arena_malloc(arena, size);
}
static void *aa_realloc(HAllocator *allocator, void *ptr, size_t size)
{
HArena *arena = ((ArenaAllocator *)allocator)->arena;
assert(((void)"XXX need realloc for arena allocator", 0));
return NULL;
}
static void aa_free(HAllocator *allocator, void *ptr)
{
HArena *arena = ((ArenaAllocator *)allocator)->arena;
h_arena_free(arena, ptr);
}
static HParseResult *parse_bind(void *be_, HParseState *state) {
BindEnv *be = be_;
HParseResult *res = h_do_parse(be->p, state);
if(!res)
return NULL;
// create a temporary arena allocator for the continuation
HArena *arena = h_new_arena(be->mm__, 0);
ArenaAllocator aa = {{aa_alloc, aa_realloc, aa_free}, arena};
HParser *kx = be->k((HAllocator *)&aa, res->ast, be->env);
if(!kx) {
h_delete_arena(arena);
return NULL;
}
res = h_do_parse(kx, state);
h_delete_arena(arena);
return res;
}
static const HParserVtable bind_vt = {
.parse = parse_bind,
.isValidRegular = h_false,
.isValidCF = h_false,
.compile_to_rvm = h_not_regular,
};
HParser *h_bind(const HParser *p, HContinuation k, void *env)
{
return h_bind__m(&system_allocator, p, k, env);
}
HParser *h_bind__m(HAllocator *mm__,
const HParser *p, HContinuation k, void *env)
{
BindEnv *be = h_new(BindEnv, 1);
be->p = p;
be->k = k;
be->env = env;
be->mm__ = mm__;
return h_new_parser(mm__, &bind_vt, be);
}

View file

@ -11,19 +11,9 @@ static void switch_bit_order(HInputStream *input)
{
assert(input->bit_offset <= 8);
if((input->bit_offset % 8) != 0) {
// switching bit order in the middle of a byte
// we leave bit_offset untouched. this means that something like
// le(bits(5)),le(bits(3))
// is equivalent to
// le(bits(5),bits(3)) .
// on the other hand,
// le(bits(5)),be(bits(5))
// will read the same 5 bits twice and discard the top 3.
} else {
// flip offset (0 <-> 8)
input->bit_offset = 8 - input->bit_offset;
}
char tmp = input->bit_offset;
input->bit_offset = input->margin;
input->margin = tmp;
}
static HParseResult *parse_endianness(void *env, HParseState *state)

View file

@ -18,6 +18,7 @@ static inline HParseResult* make_result(HArena *arena, HParsedToken *tok) {
HParseResult *ret = h_arena_malloc(arena, sizeof(HParseResult));
ret->ast = tok;
ret->arena = arena;
ret->bit_length = 0; // This way it gets overridden in h_do_parse
return ret;
}

179
src/parsers/permutation.c Normal file
View file

@ -0,0 +1,179 @@
#include <stdarg.h>
#include "parser_internal.h"
typedef struct {
size_t len;
HParser **p_array;
} HSequence;
// main recursion, used by parse_permutation below
static int parse_permutation_tail(const HSequence *s,
HCountedArray *seq,
const size_t k, char *set,
HParseState *state)
{
// shorthands
const size_t n = s->len;
HParser **ps = s->p_array;
// trivial base case
if(k >= n)
return 1;
HInputStream bak = state->input_stream;
// try available parsers as first element of the permutation tail
HParseResult *match = NULL;
size_t i;
for(i=0; i<n; i++) {
if(set[i]) {
match = h_do_parse(ps[i], state);
// save result
if(match)
seq->elements[i] = (void *)match->ast;
// treat empty optionals (TT_NONE) like failure here
if(match && match->ast && match->ast->token_type == TT_NONE)
match = NULL;
if(match) {
// remove parser from active set
set[i] = 0;
// parse the rest of the permutation phrase
if(parse_permutation_tail(s, seq, k+1, set, state)) {
// success
return 1;
} else {
// place parser back in active set and try the next
set[i] = 1;
}
}
state->input_stream = bak; // rewind input
}
}
// if all available parsers were empty optionals (TT_NONE), still succeed
for(i=0; i<n; i++) {
if(set[i]) {
HParsedToken *tok = seq->elements[i];
if(!(tok && tok->token_type == TT_NONE))
break;
}
}
if(i==n) // all were TT_NONE
return 1;
// permutations exhausted
return 0;
}
static HParseResult *parse_permutation(void *env, HParseState *state)
{
const HSequence *s = env;
const size_t n = s->len;
// current set of available (not yet matched) parsers
char *set = h_arena_malloc(state->arena, sizeof(char) * n);
memset(set, 1, sizeof(char) * n);
// parse result
HCountedArray *seq = h_carray_new_sized(state->arena, n);
if(parse_permutation_tail(s, seq, 0, set, state)) {
// success
// return the sequence of results
seq->used = n;
HParsedToken *tok = a_new(HParsedToken, 1);
tok->token_type = TT_SEQUENCE;
tok->seq = seq;
return make_result(state->arena, tok);
} else {
// no parse
// XXX free seq
return NULL;
}
}
static const HParserVtable permutation_vt = {
.parse = parse_permutation,
.isValidRegular = h_false,
.isValidCF = h_false,
.desugar = NULL,
.compile_to_rvm = h_not_regular,
};
HParser* h_permutation(HParser* p, ...) {
va_list ap;
va_start(ap, p);
HParser* ret = h_permutation__mv(&system_allocator, p, ap);
va_end(ap);
return ret;
}
HParser* h_permutation__m(HAllocator* mm__, HParser* p, ...) {
va_list ap;
va_start(ap, p);
HParser* ret = h_permutation__mv(mm__, p, ap);
va_end(ap);
return ret;
}
HParser* h_permutation__v(HParser* p, va_list ap) {
return h_permutation__mv(&system_allocator, p, ap);
}
HParser* h_permutation__mv(HAllocator* mm__, HParser* p, va_list ap_) {
va_list ap;
size_t len = 0;
HSequence *s = h_new(HSequence, 1);
HParser *arg;
va_copy(ap, ap_);
do {
len++;
arg = va_arg(ap, HParser *);
} while (arg);
va_end(ap);
s->p_array = h_new(HParser *, len);
va_copy(ap, ap_);
s->p_array[0] = p;
for (size_t i = 1; i < len; i++) {
s->p_array[i] = va_arg(ap, HParser *);
} while (arg);
va_end(ap);
s->len = len;
return h_new_parser(mm__, &permutation_vt, s);
}
HParser* h_permutation__a(void *args[]) {
return h_permutation__ma(&system_allocator, args);
}
HParser* h_permutation__ma(HAllocator* mm__, void *args[]) {
size_t len = -1; // because do...while
const HParser *arg;
do {
arg=((HParser **)args)[++len];
} while(arg);
HSequence *s = h_new(HSequence, 1);
s->p_array = h_new(HParser *, len);
for (size_t i = 0; i < len; i++) {
s->p_array[i] = ((HParser **)args)[i];
}
s->len = len;
HParser *ret = h_new(HParser, 1);
ret->vtable = &permutation_vt;
ret->env = (void*)s;
ret->backend = PB_MIN;
return ret;
}

69
src/parsers/value.c Normal file
View file

@ -0,0 +1,69 @@
#include "parser_internal.h"
typedef struct {
const HParser* p;
const char* key;
} HStoredValue;
/* Stash an HParseResult into a symbol table, so that it can be
retrieved and used later. */
static HParseResult* parse_put(void *env, HParseState* state) {
HStoredValue *s = (HStoredValue*)env;
if (s->p && s->key && !h_symbol_get(state, s->key)) {
HParseResult *tmp = h_do_parse(s->p, state);
if (tmp) {
h_symbol_put(state, s->key, tmp);
}
return tmp;
}
// otherwise there's no parser, no key, or key's stored already
return NULL;
}
static const HParserVtable put_vt = {
.parse = parse_put,
.isValidRegular = h_false,
.isValidCF = h_false,
.compile_to_rvm = h_not_regular,
};
HParser* h_put_value(const HParser* p, const char* name) {
return h_put_value__m(&system_allocator, p, name);
}
HParser* h_put_value__m(HAllocator* mm__, const HParser* p, const char* name) {
HStoredValue *env = h_new(HStoredValue, 1);
env->p = p;
env->key = name;
return h_new_parser(mm__, &put_vt, env);
}
/* Retrieve a stashed result from the symbol table. */
static HParseResult* parse_get(void *env, HParseState* state) {
HStoredValue *s = (HStoredValue*)env;
if (!s->p && s->key) {
return h_symbol_get(state, s->key);
} else { // either there's no key, or there was a parser here
return NULL;
}
}
static const HParserVtable get_vt = {
.parse = parse_get,
.isValidRegular = h_false,
.isValidCF = h_false,
.compile_to_rvm = h_not_regular,
};
HParser* h_get_value(const char* name) {
return h_get_value__m(&system_allocator, name);
}
HParser* h_get_value__m(HAllocator* mm__, const char* name) {
HStoredValue *env = h_new(HStoredValue, 1);
env->p = NULL;
env->key = name;
return h_new_parser(mm__, &get_vt, env);
}

View file

@ -4,14 +4,14 @@
#include "internal.h"
#include "test_suite.h"
#define MK_INPUT_STREAM(buf,len,endianness_) \
#define MK_INPUT_STREAM(buf,len,endianness_) \
{ \
.input = (uint8_t*)buf, \
.length = len, \
.index = 0, \
.bit_offset = (((endianness_) & BIT_BIG_ENDIAN) ? 8 : 0), \
.endianness = endianness_ \
}
.input = (uint8_t*)buf, \
.length = len, \
.index = 0, \
.bit_offset = 0, \
.endianness = endianness_ \
}
static void test_bitreader_ints(void) {
@ -56,7 +56,6 @@ static void test_offset_largebits_le(void) {
g_check_cmp_int32(h_read_bits(&is, 11, false), ==, 0x2D3);
}
void register_bitreader_tests(void) {
g_test_add_func("/core/bitreader/be", test_bitreader_be);
g_test_add_func("/core/bitreader/le", test_bitreader_le);

View file

@ -24,7 +24,7 @@ void run_bitwriter_test(bitwriter_test_elem data[], char flags) {
.input = buf,
.index = 0,
.length = len,
.bit_offset = (flags & BIT_BIG_ENDIAN) ? 8 : 0,
.bit_offset = 0,
.endianness = flags,
.overrun = 0
};

View file

@ -495,6 +495,114 @@ static void test_endianness(gconstpointer backend) {
g_check_parse_match(lb_u5_, be, "abcd", 4, "u0xc");
}
HParsedToken* act_get(const HParseResult *p, void* user_data) {
HParsedToken *ret = a_new_(p->arena, HParsedToken, 1);
ret->token_type = TT_UINT;
ret->uint = 3 * (1 << p->ast->uint);
return ret;
}
static void test_put_get(gconstpointer backend) {
HParser *p = h_sequence(h_put_value(h_uint8(), "size"),
h_token((const uint8_t*)"foo", 3),
h_length_value(h_action(h_get_value("size"),
act_get, NULL),
h_uint8()),
NULL);
// Yes, the quotes in the next line look weird. Leave them alone,
// this is to deal with how C strings handle hex-formatted chars.
g_check_parse_match(p, (HParserBackend)GPOINTER_TO_INT(backend), "\x01""fooabcdef", 10, "(u0x1 <66.6f.6f> (u0x61 u0x62 u0x63 u0x64 u0x65 u0x66))");
g_check_parse_failed(p, (HParserBackend)GPOINTER_TO_INT(backend), "\x01""fooabcde", 9);
}
static void test_permutation(gconstpointer backend) {
HParserBackend be = (HParserBackend)GPOINTER_TO_INT(backend);
const HParser *p = h_permutation(h_ch('a'), h_ch('b'), h_ch('c'), NULL);
g_check_parse_match(p, be, "abc", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(p, be, "acb", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(p, be, "bac", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(p, be, "bca", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(p, be, "cab", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(p, be, "cba", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_failed(p, be, "a", 1);
g_check_parse_failed(p, be, "ab", 2);
g_check_parse_failed(p, be, "abb", 3);
const HParser *po = h_permutation(h_ch('a'), h_ch('b'), h_optional(h_ch('c')), NULL);
g_check_parse_match(po, be, "abc", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "acb", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "bac", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "bca", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "cab", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "cba", 3, "(u0x61 u0x62 u0x63)");
g_check_parse_match(po, be, "ab", 2, "(u0x61 u0x62 null)");
g_check_parse_match(po, be, "ba", 2, "(u0x61 u0x62 null)");
g_check_parse_failed(po, be, "a", 1);
g_check_parse_failed(po, be, "b", 1);
g_check_parse_failed(po, be, "c", 1);
g_check_parse_failed(po, be, "ca", 2);
g_check_parse_failed(po, be, "cb", 2);
g_check_parse_failed(po, be, "cc", 2);
g_check_parse_failed(po, be, "ccab", 4);
g_check_parse_failed(po, be, "ccc", 3);
const HParser *po2 = h_permutation(h_optional(h_ch('c')), h_ch('a'), h_ch('b'), NULL);
g_check_parse_match(po2, be, "abc", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "acb", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "bac", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "bca", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "cab", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "cba", 3, "(u0x63 u0x61 u0x62)");
g_check_parse_match(po2, be, "ab", 2, "(null u0x61 u0x62)");
g_check_parse_match(po2, be, "ba", 2, "(null u0x61 u0x62)");
g_check_parse_failed(po2, be, "a", 1);
g_check_parse_failed(po2, be, "b", 1);
g_check_parse_failed(po2, be, "c", 1);
g_check_parse_failed(po2, be, "ca", 2);
g_check_parse_failed(po2, be, "cb", 2);
g_check_parse_failed(po2, be, "cc", 2);
g_check_parse_failed(po2, be, "ccab", 4);
g_check_parse_failed(po2, be, "ccc", 3);
}
static HParser *k_test_bind(HAllocator *mm__, const HParsedToken *p, void *env) {
uint8_t one = (uintptr_t)env;
assert(p);
assert(p->token_type == TT_SEQUENCE);
int v=0;
for(size_t i=0; i<p->seq->used; i++) {
assert(p->seq->elements[i]->token_type == TT_UINT);
v = v*10 + p->seq->elements[i]->uint - '0';
}
if(v > 26)
return h_nothing_p__m(mm__); // fail
else if(v > 127)
return NULL; // equivalent to the above
else
return h_ch__m(mm__, one - 1 + v);
}
static void test_bind(gconstpointer backend) {
HParserBackend be = (HParserBackend)GPOINTER_TO_INT(backend);
const HParser *digit = h_ch_range('0', '9');
const HParser *nat = h_many1(digit);
const HParser *p = h_bind(nat, k_test_bind, (void *)(uintptr_t)'a');
g_check_parse_match(p, be, "1a", 2, "u0x61");
g_check_parse_match(p, be, "2b", 2, "u0x62");
g_check_parse_match(p, be, "26z", 3, "u0x7a");
g_check_parse_failed(p, be, "1x", 2);
g_check_parse_failed(p, be, "29y", 3);
g_check_parse_failed(p, be, "@", 1);
g_check_parse_failed(p, be, "27{", 3);
g_check_parse_failed(p, be, "272{", 4);
}
void register_parser_tests(void) {
g_test_add_data_func("/core/parser/packrat/token", GINT_TO_POINTER(PB_PACKRAT), test_token);
g_test_add_data_func("/core/parser/packrat/ch", GINT_TO_POINTER(PB_PACKRAT), test_ch);
@ -542,6 +650,9 @@ void register_parser_tests(void) {
g_test_add_data_func("/core/parser/packrat/leftrec-ne", GINT_TO_POINTER(PB_PACKRAT), test_leftrec_ne);
g_test_add_data_func("/core/parser/packrat/rightrec", GINT_TO_POINTER(PB_PACKRAT), test_rightrec);
g_test_add_data_func("/core/parser/packrat/endianness", GINT_TO_POINTER(PB_PACKRAT), test_endianness);
g_test_add_data_func("/core/parser/packrat/putget", GINT_TO_POINTER(PB_PACKRAT), test_put_get);
g_test_add_data_func("/core/parser/packrat/permutation", GINT_TO_POINTER(PB_PACKRAT), test_permutation);
g_test_add_data_func("/core/parser/packrat/bind", GINT_TO_POINTER(PB_PACKRAT), test_bind);
g_test_add_data_func("/core/parser/llk/token", GINT_TO_POINTER(PB_LLk), test_token);
g_test_add_data_func("/core/parser/llk/ch", GINT_TO_POINTER(PB_LLk), test_ch);

102
src/t_regression.c Normal file
View file

@ -0,0 +1,102 @@
#include <glib.h>
#include <stdint.h>
#include "glue.h"
#include "hammer.h"
#include "test_suite.h"
#include "internal.h"
static void test_bug118(void) {
// https://github.com/UpstandingHackers/hammer/issues/118
// Adapted from https://gist.github.com/mrdomino/c6bc91a7cb3b9817edb5
HParseResult* p;
const uint8_t *input = (uint8_t*)"\x69\x5A\x6A\x7A\x8A\x9A";
#define MY_ENDIAN (BIT_BIG_ENDIAN | BYTE_LITTLE_ENDIAN)
H_RULE(nibble, h_with_endianness(MY_ENDIAN, h_bits(4, false)));
H_RULE(sample, h_with_endianness(MY_ENDIAN, h_bits(10, false)));
#undef MY_ENDIAN
H_RULE(samples, h_sequence(h_repeat_n(sample, 3), h_ignore(h_bits(2, false)), NULL));
H_RULE(header_ok, h_sequence(nibble, nibble, NULL));
H_RULE(header_weird, h_sequence(nibble, nibble, nibble, NULL));
H_RULE(parser_ok, h_sequence(header_ok, samples, NULL));
H_RULE(parser_weird, h_sequence(header_weird, samples, NULL));
p = h_parse(parser_weird, input, 6);
g_check_cmp_int32(p->bit_length, ==, 44);
h_parse_result_free(p);
p = h_parse(parser_ok, input, 6);
g_check_cmp_int32(p->bit_length, ==, 40);
h_parse_result_free(p);
}
static void test_seq_index_path(void) {
HArena *arena = h_new_arena(&system_allocator, 0);
HParsedToken *seq = h_make_seqn(arena, 1);
HParsedToken *seq2 = h_make_seqn(arena, 2);
HParsedToken *tok1 = h_make_uint(arena, 41);
HParsedToken *tok2 = h_make_uint(arena, 42);
seq->seq->elements[0] = seq2;
seq->seq->used = 1;
seq2->seq->elements[0] = tok1;
seq2->seq->elements[1] = tok2;
seq2->seq->used = 2;
g_check_cmp_int(h_seq_index_path(seq, 0, -1)->token_type, ==, TT_SEQUENCE);
g_check_cmp_int(h_seq_index_path(seq, 0, 0, -1)->token_type, ==, TT_UINT);
g_check_cmp_int64(h_seq_index_path(seq, 0, 0, -1)->uint, ==, 41);
g_check_cmp_int64(h_seq_index_path(seq, 0, 1, -1)->uint, ==, 42);
}
#define MK_INPUT_STREAM(buf,len,endianness_) \
{ \
.input = (uint8_t*)buf, \
.length = len, \
.index = 0, \
.bit_offset = 0, \
.endianness = endianness_ \
}
static void test_read_bits_48(void) {
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 32, false), ==, 0x78563412);
g_check_cmp_int64(h_read_bits(&is, 16, false), ==, 0xBC9A);
}
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 31, false), ==, 0x78563412);
g_check_cmp_int64(h_read_bits(&is, 17, false), ==, 0x17934);
}
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 33, false), ==, 0x78563412);
g_check_cmp_int64(h_read_bits(&is, 17, false), ==, 0x5E4D);
}
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 36, false), ==, 0xA78563412);
g_check_cmp_int64(h_read_bits(&is, 12, false), ==, 0xBC9);
}
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 40, false), ==, 0x9A78563412);
g_check_cmp_int64(h_read_bits(&is, 8, false), ==, 0xBC);
}
{
HInputStream is = MK_INPUT_STREAM("\x12\x34\x56\x78\x9A\xBC", 6, BIT_LITTLE_ENDIAN | BYTE_LITTLE_ENDIAN);
g_check_cmp_int64(h_read_bits(&is, 48, false), ==, 0xBC9A78563412);
}
}
void register_regression_tests(void) {
g_test_add_func("/core/regression/bug118", test_bug118);
g_test_add_func("/core/regression/seq_index_path", test_seq_index_path);
g_test_add_func("/core/regression/read_bits_48", test_read_bits_48);
}

View file

@ -25,6 +25,7 @@ extern void register_parser_tests();
extern void register_grammar_tests();
extern void register_misc_tests();
extern void register_benchmark_tests();
extern void register_regression_tests();
int main(int argc, char** argv) {
g_test_init(&argc, &argv, NULL);
@ -35,6 +36,7 @@ int main(int argc, char** argv) {
register_parser_tests();
register_grammar_tests();
register_misc_tests();
register_regression_tests();
if (g_test_slow() || g_test_perf())
register_benchmark_tests();

View file

@ -212,6 +212,7 @@
#define g_check_cmp_int(n1, op, n2) g_check_inttype("%d", int, n1, op, n2)
#define g_check_cmp_int32(n1, op, n2) g_check_inttype("%d", int32_t, n1, op, n2)
#define g_check_cmp_int64(n1, op, n2) g_check_inttype("%" PRId64, int64_t, n1, op, n2)
#define g_check_cmp_uint32(n1, op, n2) g_check_inttype("%u", uint32_t, n1, op, n2)