generalize most of llk.c to arbitrary k (ex. h_predict) - still bugged

This commit is contained in:
Sven M. Hallberg 2013-05-23 21:01:37 +02:00
parent 3ff32e86e4
commit 5e3c681dbc
3 changed files with 172 additions and 60 deletions

View file

@ -3,17 +3,16 @@
#include "../cfgrammar.h" #include "../cfgrammar.h"
#include "../parsers/parser_internal.h" #include "../parsers/parser_internal.h"
// XXX despite the names, this is all LL(1) right now. TODO
/* Generating the LL(k) parse table */ /* Generating the LL(k) parse table */
/* Maps each nonterminal (HCFChoice) of the grammar to another hash table that /* Maps each nonterminal (HCFChoice) of the grammar to a HCFStringMap that
* maps lookahead tokens (HCFToken) to productions (HCFSequence). * maps lookahead strings to productions (HCFSequence).
*/ */
typedef struct HLLkTable_ { typedef struct HLLkTable_ {
HHashTable *rows; HHashTable *rows;
HCFChoice *start; // start symbol HCFChoice *start; // start symbol
size_t k; // lookahead depth XXX needed?
HArena *arena; HArena *arena;
HAllocator *mm__; HAllocator *mm__;
} HLLkTable; } HLLkTable;
@ -28,20 +27,34 @@ static const HCFToken end_token = 0x200;
const HCFSequence *h_llk_lookup(const HLLkTable *table, const HCFChoice *x, const HCFSequence *h_llk_lookup(const HLLkTable *table, const HCFChoice *x,
HInputStream lookahead) HInputStream lookahead)
{ {
// note the lookahead stream is passed by value, i.e. a copy. const HCFStringMap *row = h_hashtable_get(table->rows, x);
// reading bits from it does not consume them from the real input.
HCFToken tok;
uint8_t c = h_read_bits(&lookahead, 8, false);
if(lookahead.overrun)
tok = end_token;
else
tok = char_token(c);
const HHashTable *row = h_hashtable_get(table->rows, x);
assert(row != NULL); // the table should have one row for each nonterminal assert(row != NULL); // the table should have one row for each nonterminal
const HCFSequence *production = h_hashtable_get(row, (void *)tok); assert(!row->epsilon_branch); // would match without looking at the input
return production; // XXX cases where this could be useful?
const HCFStringMap *m = row;
while(m) {
if(m->epsilon_branch) { // input matched
// assert: another lookahead would not bring a more specific match.
// this is for the table generator to ensure.
return m->epsilon_branch;
}
// note the lookahead stream is passed by value, i.e. a copy.
// reading bits from it does not consume them from the real input.
uint8_t c = h_read_bits(&lookahead, 8, false);
if(lookahead.overrun) { // end of input
// XXX assumption of byte-wise grammar and input
return m->end_branch;
}
// no match yet, descend
m = h_stringmap_get_char(m, c);
}
return NULL;
} }
/* Allocate a new parse table. */ /* Allocate a new parse table. */
@ -72,58 +85,126 @@ void h_llktable_free(HLLkTable *table)
h_free(table); h_free(table);
} }
/* Compute the predict set of production "A -> rhs". */ /* Compute the predict_k set of production "A -> rhs".
HHashSet *h_predict(HCFGrammar *g, const HCFChoice *A, const HCFSequence *rhs) * Always returns a newly-allocated HCFStringMap.
*/
HCFStringMap *h_predict(size_t k, HCFGrammar *g,
const HCFChoice *A, const HCFSequence *rhs)
{ {
assert(k==1); // XXX
HCFStringMap *ret = h_stringmap_new(g->arena);
// predict(A -> rhs) = first(rhs) u follow(A) if "" can be derived from rhs // predict(A -> rhs) = first(rhs) u follow(A) if "" can be derived from rhs
// predict(A -> rhs) = first(rhs) otherwise // predict(A -> rhs) = first(rhs) otherwise
const HCFStringMap *first_rhs = h_first_seq(1, g, rhs->items);
const HCFStringMap *follow_A = h_follow(1, g, A);
HHashSet *ret = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
h_hashset_put_all(ret, first_rhs->char_branches); h_stringmap_update(ret, h_first_seq(k, g, rhs->items));
if(first_rhs->end_branch) if(h_derives_epsilon_seq(g, rhs->items))
h_hashset_put(ret, (void *)end_token); h_stringmap_update(ret, h_follow(k, g, A));
if(h_derives_epsilon_seq(g, rhs->items)) { // make sure there are only strings of length _exactly_ k
h_hashset_put_all(ret, follow_A->char_branches); ret->epsilon_branch = NULL;
if(follow_A->end_branch)
h_hashset_put(ret, (void *)end_token);
}
return ret; return ret;
} }
/* Generate entries for the production "A -> rhs" in the given table row. */ void *const CONFLICT = (void *)(uintptr_t)(-1);
static
int fill_table_row(HCFGrammar *g, HHashTable *row,
const HCFChoice *A, HCFSequence *rhs)
{
// iterate over predict(A -> rhs)
HHashSet *pred = h_predict(g, A, rhs);
size_t i; static HHashSet *cte_workset; // emulating a closure
HHashTableEntry *hte; static void *combine_table_entry(void *dst, const void *src)
for(i=0; i < pred->capacity; i++) { {
for(hte = &pred->contents[i]; hte; hte = hte->next) { if(dst == CONFLICT) { // previous conflict
h_hashset_put(cte_workset, src);
} else if(dst != src) { // new conflict
h_hashset_put(cte_workset, dst);
h_hashset_put(cte_workset, src);
dst = CONFLICT;
}
return dst;
}
// add the mappings of src to dst, calling combine if there is a collision
// note: might reuse parts of src in building up dst!
static void stringmap_merge(void *(*combine)(void *, const void *),
HCFStringMap *dst, HCFStringMap *src)
{
if(src->epsilon_branch) {
if(dst->epsilon_branch)
dst->epsilon_branch = combine(dst->epsilon_branch, src->epsilon_branch);
else
dst->epsilon_branch = src->epsilon_branch;
}
if(src->end_branch) {
if(dst->end_branch)
dst->end_branch = combine(dst->end_branch, src->end_branch);
else
dst->end_branch = src->end_branch;
}
// iterate over src->char_branches
const HHashTable *ht = src->char_branches;
for(size_t i=0; i < ht->capacity; i++) {
for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if(hte->key == NULL) if(hte->key == NULL)
continue; continue;
HCFToken x = (uintptr_t)hte->key;
if(h_hashtable_present(row, (void *)x)) HCharKey c = (HCharKey)hte->key;
return -1; // table would be ambiguous HCFStringMap *src_ = hte->value;
h_hashtable_put(row, (void *)x, rhs); if(src_) {
HCFStringMap *dst_ = h_hashtable_get(dst->char_branches, (void *)c);
if(dst_)
stringmap_merge(combine, dst_, src_);
else
dst_ = src_;
}
}
} }
} }
/* Generate entries for the production "A -> rhs" in the given table row. */
static int fill_production_entries(size_t k, HCFGrammar *g, HCFStringMap *row,
const HCFChoice *A, HCFSequence *rhs)
{
for(size_t i=1; i<=k; i++) {
HCFStringMap *pred = h_predict(i, g, A, rhs);
h_stringmap_replace(pred, NULL, rhs); // make all values in pred map to rhs
// clear previous conflict markers
h_stringmap_replace(row, CONFLICT, NULL);
// merge predict set into the row, accumulating conflicts in workset
cte_workset = h_hashset_new(g->arena, h_eq_ptr, h_hash_ptr);
// will be deleted after compile
stringmap_merge(combine_table_entry, row, pred);
// if the workset is empty, row is free of conflicts and we are done.
if(h_hashset_empty(cte_workset))
return 0;
}
// if we reach here, conflicts remain at maximum lookahead
return -1;
}
/* Generate entries for the production "A" in the given table row. */
static int fill_table_row(size_t k, HCFGrammar *g, HCFStringMap *row,
const HCFChoice *A)
{
// iterate over A's productions
for(HCFSequence **s = A->seq; *s; s++) {
// record this production in row as appropriate
if(fill_production_entries(k, g, row, A, *s) < 0)
return -1;
}
return 0; return 0;
} }
/* Generate the LL(k) parse table from the given grammar. /* Generate the LL(k) parse table from the given grammar.
* Returns -1 on error, 0 on success. * Returns -1 on error, 0 on success.
*/ */
static int fill_table(HCFGrammar *g, HLLkTable *table) static int fill_table(size_t k, HCFGrammar *g, HLLkTable *table)
{ {
table->start = g->start; table->start = g->start;
@ -138,17 +219,13 @@ static int fill_table(HCFGrammar *g, HLLkTable *table)
assert(a->type == HCF_CHOICE); assert(a->type == HCF_CHOICE);
// create table row for this nonterminal // create table row for this nonterminal
HHashTable *row = h_hashtable_new(table->arena, h_eq_ptr, h_hash_ptr); HCFStringMap *row = h_stringmap_new(table->arena);
h_hashtable_put(table->rows, a, row); h_hashtable_put(table->rows, a, row);
// iterate over a's productions if(fill_table_row(k, g, row, a) < 0) {
HCFSequence **s; // unresolvable conflicts in row
for(s = a->seq; *s; s++) {
// record this production in row as appropriate
// this can signal an ambiguity conflict.
// NB we don't worry about deallocating anything, h_llk_compile will // NB we don't worry about deallocating anything, h_llk_compile will
// delete the whole arena for us. // delete the whole arena for us.
if(fill_table_row(g, row, a, *s) < 0)
return -1; return -1;
} }
} }
@ -157,8 +234,13 @@ static int fill_table(HCFGrammar *g, HLLkTable *table)
return 0; return 0;
} }
static const size_t K_DEFAULT = 1;
int h_llk_compile(HAllocator* mm__, HParser* parser, const void* params) int h_llk_compile(HAllocator* mm__, HParser* parser, const void* params)
{ {
size_t k = params? (uintptr_t)params : K_DEFAULT;
assert(k>0);
// Convert parser to a CFG. This can fail as indicated by a NULL return. // Convert parser to a CFG. This can fail as indicated by a NULL return.
HCFGrammar *grammar = h_cfgrammar(mm__, parser); HCFGrammar *grammar = h_cfgrammar(mm__, parser);
if(grammar == NULL) if(grammar == NULL)
@ -170,7 +252,7 @@ int h_llk_compile(HAllocator* mm__, HParser* parser, const void* params)
// generate table and store in parser->backend_data. // generate table and store in parser->backend_data.
HLLkTable *table = h_llktable_new(mm__); HLLkTable *table = h_llktable_new(mm__);
if(fill_table(grammar, table) < 0) { if(fill_table(k, grammar, table) < 0) {
// the table was ambiguous // the table was ambiguous
h_cfgrammar_free(grammar); h_cfgrammar_free(grammar);
h_llktable_free(table); h_llktable_free(table);
@ -358,7 +440,7 @@ int test_llk(void)
*/ */
HParser *X = h_optional(h_ch('x')); HParser *X = h_optional(h_ch('x'));
HParser *Y = h_sequence(h_ch('y'), NULL); HParser *Y = h_epsilon_p(); //h_sequence(h_ch('y'), NULL);
HParser *A = h_sequence(X, Y, h_ch('a'), NULL); HParser *A = h_sequence(X, Y, h_ch('a'), NULL);
HParser *B = h_sequence(Y, h_ch('b'), NULL); HParser *B = h_sequence(Y, h_ch('b'), NULL);
HParser *p = h_choice(A, B, NULL); HParser *p = h_choice(A, B, NULL);

View file

@ -265,12 +265,38 @@ void h_stringmap_update(HCFStringMap *m, const HCFStringMap *n)
h_hashtable_merge(combine_stringmap, m->char_branches, n->char_branches); h_hashtable_merge(combine_stringmap, m->char_branches, n->char_branches);
} }
/* Replace all occurances of old in m with new.
* If old is NULL, replace all values in m with new.
* If new is NULL, remove the respective values.
*/
void h_stringmap_replace(HCFStringMap *m, void *old, void *new)
{
if(!old || m->epsilon_branch == old)
m->epsilon_branch = new;
if(!old || m->end_branch == old)
m->end_branch = new;
// iterate over m->char_branches
const HHashTable *ht = m->char_branches;
for(size_t i=0; i < ht->capacity; i++) {
for(HHashTableEntry *hte = &ht->contents[i]; hte; hte = hte->next) {
if(hte->key == NULL)
continue;
HCFStringMap *m_ = hte->value;
if(m_)
h_stringmap_replace(m_, old, new);
}
}
}
void *h_stringmap_get(const HCFStringMap *m, const uint8_t *str, size_t n, bool end) void *h_stringmap_get(const HCFStringMap *m, const uint8_t *str, size_t n, bool end)
{ {
for(size_t i=0; i<n; i++) { for(size_t i=0; i<n; i++) {
if(i==n-1 && end && m->end_branch) if(i==n-1 && end && m->end_branch)
return m->end_branch; return m->end_branch;
m = h_hashtable_get(m->char_branches, (void *)char_key(str[i])); m = h_stringmap_get_char(m, str[i]);
if(!m) if(!m)
return NULL; return NULL;
} }

View file

@ -45,10 +45,14 @@ void h_stringmap_put_epsilon(HCFStringMap *m, void *v);
void h_stringmap_put_after(HCFStringMap *m, uint8_t c, HCFStringMap *ends); void h_stringmap_put_after(HCFStringMap *m, uint8_t c, HCFStringMap *ends);
void h_stringmap_put_char(HCFStringMap *m, uint8_t c, void *v); void h_stringmap_put_char(HCFStringMap *m, uint8_t c, void *v);
void h_stringmap_update(HCFStringMap *m, const HCFStringMap *n); void h_stringmap_update(HCFStringMap *m, const HCFStringMap *n);
void h_stringmap_replace(HCFStringMap *m, void *old, void *new);
void *h_stringmap_get(const HCFStringMap *m, const uint8_t *str, size_t n, bool end); void *h_stringmap_get(const HCFStringMap *m, const uint8_t *str, size_t n, bool end);
bool h_stringmap_present(const HCFStringMap *m, const uint8_t *str, size_t n, bool end); bool h_stringmap_present(const HCFStringMap *m, const uint8_t *str, size_t n, bool end);
bool h_stringmap_present_epsilon(const HCFStringMap *m); bool h_stringmap_present_epsilon(const HCFStringMap *m);
static inline void *h_stringmap_get_char(const HCFStringMap *m, const uint8_t c)
{ return h_hashtable_get(m->char_branches, (void *)char_key(c)); }
/* Convert 'parser' into CFG representation by desugaring and compiling the set /* Convert 'parser' into CFG representation by desugaring and compiling the set
* of nonterminals. * of nonterminals.