Merge remote-tracking branch 'mlp/master'

This commit is contained in:
Dan Hirsch 2012-05-23 01:02:49 +02:00
commit 2dd687ea66
5 changed files with 463 additions and 63 deletions

85
examples/dns.c Normal file
View file

@ -0,0 +1,85 @@
#include "../hammer.h"
bool is_zero(parse_result_t *p) {
return (0 == p->ast->uint);
}
bool validate_dns(parse_result_t *p) {
}
int main(int argc, char **argv) {
const parser_t dns_header = sequence(bits(16, false), // ID
bits(1, false), // QR
bits(4, false), // opcode
bits(1, false), // AA
bits(1, false), // TC
bits(1, false), // RD
bits(1, false), // RA
ignore(attr_bool(bits(3, false), is_zero)), // Z
bits(4, false), // RCODE
uint16(), // QDCOUNT
uint16(), // ANCOUNT
uint16(), // NSCOUNT
uint16(), // ARCOUNT
NULL);
const parser_t *dns_question = sequence(length_value(uint8(), uint8()), // QNAME
uint16(), // QTYPE
uint16(), // QCLASS
NULL);
const parser_t *letter = choice(range('a', 'z'),
range('A', 'Z'),
NULL);
const parser_t *let_dig = choice(letter,
range('0', '9'),
NULL);
const parser_t *ldh_str = many1(choice(let_dig,
ch('-'),
NULL));
const parser_t *label = sequence(letter,
optional(sequence(optional(ldh_str),
let_dig,
NULL)),
NULL);
/**
* You could write it like this ...
* parser_t *indirect_subdomain = indirect();
* const parser_t *subdomain = choice(label,
* sequence(indirect_subdomain,
* ch('.'),
* label,
* NULL),
* NULL);
* bind_indirect(indirect_subdomain, subdomain);
*
* ... but this is easier and equivalent
*/
parser_t *subdomain = sepBy1(label, ch('.'));
const parser_t *domain = choice(subdomain,
ch(' '),
NULL);
const parser_t *dns_rr = sequence(domain, // NAME
uint16(), // TYPE
uint16(), // CLASS
uint32(), // TTL
length_value(uint16(), uint8()) // RDLENGTH+RDATA
NULL);
const parser_t *dns_message = attr_bool(sequence(dns_header,
dns_question,
many(dns_rr),
end_p(),
NULL),
validate_dns);
}

View file

@ -336,7 +336,31 @@ const parser_t* whitespace(const parser_t* p) {
return ret; return ret;
} }
const parser_t* action(const parser_t* p, const action_t a) { return &unimplemented; } typedef struct {
const parser_t *p;
action_t action;
} parse_action_t;
static parse_result_t* parse_action(void *env, parse_state_t *state) {
parse_action_t *a = (parse_action_t*)env;
if (a->p && a->action) {
parse_result_t *tmp = do_parse(a->p, state);
//parsed_token_t *tok = a->action(do_parse(a->p, state));
const parsed_token_t *tok = a->action(tmp);
return make_result(state, (parsed_token_t*)tok);
} else // either the parser's missing or the action's missing
return NULL;
}
const parser_t* action(const parser_t* p, const action_t a) {
parser_t *res = g_new(parser_t, 1);
res->fn = parse_action;
parse_action_t *env = g_new(parse_action_t, 1);
env->p = p;
env->action = a;
res->env = (void*)env;
return res;
}
static parse_result_t* parse_charset(void *env, parse_state_t *state) { static parse_result_t* parse_charset(void *env, parse_state_t *state) {
uint8_t in = read_bits(&state->input_stream, 8, false); uint8_t in = read_bits(&state->input_stream, 8, false);
@ -783,7 +807,6 @@ const parser_t* epsilon_p() {
return res; return res;
} }
static parse_result_t* parse_indirect(void* env, parse_state_t* state) { static parse_result_t* parse_indirect(void* env, parse_state_t* state) {
return do_parse(env, state); return do_parse(env, state);
} }
@ -798,7 +821,68 @@ parser_t* indirect() {
return res; return res;
} }
const parser_t* attr_bool(const parser_t* p, attr_bool_t a) { return &unimplemented; } typedef struct {
const parser_t *p;
predicate_t pred;
} attr_bool_t;
static parse_result_t* parse_attr_bool(void *env, parse_state_t *state) {
attr_bool_t *a = (attr_bool_t*)env;
parse_result_t *res = do_parse(a->p, state);
if (res) {
if (a->pred(res))
return res;
else
return NULL;
} else
return NULL;
}
const parser_t* attr_bool(const parser_t* p, predicate_t pred) {
parser_t *res = g_new(parser_t, 1);
res->fn = parse_attr_bool;
attr_bool_t *env = g_new(attr_bool_t, 1);
env->p = p;
env->pred = pred;
res->env = (void*)env;
return res;
}
typedef struct {
const parser_t *length;
const parser_t *value;
} lv_t;
static parse_result_t* parse_length_value(void *env, parse_state_t *state) {
lv_t *lv = (lv_t*)env;
parse_result_t *len = do_parse(lv->length, state);
if (!len)
return NULL;
if (len->ast->token_type != TT_UINT)
errx(1, "Length parser must return an unsigned integer");
parser_t epsilon_local = {
.fn = parse_epsilon,
.env = NULL
};
repeat_t repeat = {
.p = lv->value,
.sep = &epsilon_local,
.count = len->ast->uint,
.min_p = false
};
return parse_many(&repeat, state);
}
const parser_t* length_value(const parser_t* length, const parser_t* value) {
parser_t *res = g_new(parser_t, 1);
res->fn = parse_length_value;
lv_t *env = g_new(lv_t, 1);
env->length = length;
env->value = value;
res->env = (void*)env;
return res;
}
const parser_t* and(const parser_t* p) { return &unimplemented; } const parser_t* and(const parser_t* p) { return &unimplemented; }
static parse_result_t* parse_not(void* env, parse_state_t* state) { static parse_result_t* parse_not(void* env, parse_state_t* state) {
@ -881,7 +965,7 @@ static void test_range(void) {
static void test_int64(void) { static void test_int64(void) {
const parser_t *int64_ = int64(); const parser_t *int64_ = int64();
g_check_parse_ok(int64_, "\xff\xff\xff\xfe\x00\x00\x00\x00", 8, "s-0x200000000"); g_check_parse_ok(int64_, "\xff\xff\xff\xfe\x00\x00\x00\x00", 8, "s0x200000000");
g_check_parse_failed(int64_, "\xff\xff\xff\xfe\x00\x00\x00", 7); g_check_parse_failed(int64_, "\xff\xff\xff\xfe\x00\x00\x00", 7);
} }
@ -962,15 +1046,52 @@ static void test_whitespace(void) {
g_check_parse_failed(whitespace_, "_a", 2); g_check_parse_failed(whitespace_, "_a", 2);
} }
parse_result_t* upcase(parse_result_t *p) { #include <ctype.h>
return NULL; // shut compiler up
const parsed_token_t* upcase(parse_result_t *p) {
switch(p->ast->token_type) {
case TT_SEQUENCE:
{
parsed_token_t *ret = a_new_(p->arena, parsed_token_t, 1);
counted_array_t *seq = carray_new_sized(p->arena, p->ast->seq->used);
ret->token_type = TT_SEQUENCE;
for (size_t i=0; i<p->ast->seq->used; ++i) {
if (TT_UINT == ((parsed_token_t*)p->ast->seq->elements[i])->token_type) {
parsed_token_t *tmp = a_new_(p->arena, parsed_token_t, 1);
tmp->token_type = TT_UINT;
tmp->uint = toupper(((parsed_token_t*)p->ast->seq->elements[i])->uint);
carray_append(seq, tmp);
} else {
carray_append(seq, p->ast->seq->elements[i]);
}
}
ret->seq = seq;
return (const parsed_token_t*)ret;
}
case TT_UINT:
{
parsed_token_t *ret = a_new_(p->arena, parsed_token_t, 1);
ret->token_type = TT_UINT;
ret->uint = toupper(p->ast->uint);
return (const parsed_token_t*)ret;
}
default:
return p->ast;
}
} }
static void test_action(void) { static void test_action(void) {
const parser_t *action_ = action(sequence(choice(ch('a'), ch('A'), NULL), choice(ch('b'), ch('B'), NULL), NULL), upcase); const parser_t *action_ = action(sequence(choice(ch('a'),
ch('A'),
NULL),
choice(ch('b'),
ch('B'),
NULL),
NULL),
upcase);
g_check_parse_ok(action_, "ab", 2, "(u0x41, u0x42)"); g_check_parse_ok(action_, "ab", 2, "(u0x41 u0x42)");
g_check_parse_ok(action_, "AB", 2, "(u0x41, u0x42)"); g_check_parse_ok(action_, "AB", 2, "(u0x41 u0x42)");
} }
static void test_not_in(void) { static void test_not_in(void) {

View file

@ -36,6 +36,7 @@ typedef enum token_type {
TT_SINT, TT_SINT,
TT_UINT, TT_UINT,
TT_SEQUENCE, TT_SEQUENCE,
TT_USER = 64,
TT_ERR, TT_ERR,
TT_MAX TT_MAX
} token_type_t; } token_type_t;
@ -59,173 +60,362 @@ typedef struct parsed_token {
double dbl; double dbl;
float flt; float flt;
counted_array_t *seq; // a sequence of parsed_token_t's counted_array_t *seq; // a sequence of parsed_token_t's
void *user;
}; };
size_t index; size_t index;
char bit_offset; char bit_offset;
} parsed_token_t; } parsed_token_t;
/**
* The result of a successful parse.
/* If a parse fails, the parse result will be NULL. * If a parse fails, the parse result will be NULL.
* If a parse is successful but there's nothing there (i.e., if end_p succeeds) then there's a parse result but its ast is NULL. * If a parse is successful but there's nothing there (i.e., if end_p
* succeeds) then there's a parse result but its ast is NULL.
*/ */
typedef struct parse_result { typedef struct parse_result {
const parsed_token_t *ast; const parsed_token_t *ast;
arena_t arena; arena_t arena;
} parse_result_t; } parse_result_t;
/* Type of an action to apply to an AST, used in the action() parser. */ /**
typedef parse_result_t* (*action_t)(parse_result_t *p); * Type of an action to apply to an AST, used in the action() parser.
* It can be any (user-defined) function that takes a parse_result_t*
* and returns a parsed_token_t*. (This is so that the user doesn't
* have to worry about memory allocation; action() does that for you.)
* Note that the tagged union in parsed_token_t* supports user-defined
* types, so you can create your own token types (corresponding to,
* say, structs) and stuff values for them into the void* in the
* tagged union in parsed_token_t.
*/
typedef const parsed_token_t* (*action_t)(parse_result_t *p);
/* Type of a boolean attribute-checking function, used in the attr_bool() parser. */ /**
typedef int (*attr_bool_t)(void *env); * Type of a boolean attribute-checking function, used in the
* attr_bool() parser. It can be any (user-defined) function that takes
* a parse_result_t* and returns true or false.
*/
typedef bool (*predicate_t)(parse_result_t *p);
typedef struct parser { typedef struct parser {
parse_result_t* (*fn)(void *env, parse_state_t *state); parse_result_t* (*fn)(void *env, parse_state_t *state);
void *env; void *env;
} parser_t; } parser_t;
/**
* Top-level function to call a parser that has been built over some
* piece of input (of known size).
*/
parse_result_t* parse(const parser_t* parser, const uint8_t* input, size_t length); parse_result_t* parse(const parser_t* parser, const uint8_t* input, size_t length);
/* Given a string, returns a parser that parses that string value. */ /**
* Given a string, returns a parser that parses that string value.
*
* Result token type: TT_BYTES
*/
const parser_t* token(const uint8_t *str, const size_t len); const parser_t* token(const uint8_t *str, const size_t len);
/* Given a single character, returns a parser that parses that character. */ /**
* Given a single character, returns a parser that parses that
* character.
*
* Result token type: TT_UINT
*/
const parser_t* ch(const uint8_t c); const parser_t* ch(const uint8_t c);
/* Given two single-character bounds, lower and upper, returns a parser that parses a single character within the range [lower, upper] (inclusive). */ /**
* Given two single-character bounds, lower and upper, returns a parser
* that parses a single character within the range [lower, upper]
* (inclusive).
*
* Result token type: TT_UINT
*/
const parser_t* range(const uint8_t lower, const uint8_t upper); const parser_t* range(const uint8_t lower, const uint8_t upper);
/* Returns a parser that parses the specified number of bits. sign == true if signed, false if unsigned. */ /**
* Returns a parser that parses the specified number of bits. sign ==
* true if signed, false if unsigned.
*
* Result token type: TT_SINT if sign == true, TT_UINT if sign == false
*/
const parser_t* bits(size_t len, bool sign); const parser_t* bits(size_t len, bool sign);
/* Returns a parser that parses a signed 8-byte integer value. */ /**
* Returns a parser that parses a signed 8-byte integer value.
*
* Result token type: TT_SINT
*/
const parser_t* int64(); const parser_t* int64();
/* Returns a parser that parses a signed 4-byte integer value. */ /**
* Returns a parser that parses a signed 4-byte integer value.
*
* Result token type: TT_SINT
*/
const parser_t* int32(); const parser_t* int32();
/* Returns a parser that parses a signed 2-byte integer value. */ /**
* Returns a parser that parses a signed 2-byte integer value.
*
* Result token type: TT_SINT
*/
const parser_t* int16(); const parser_t* int16();
/* Returns a parser that parses a signed 1-byte integer value. */ /**
* Returns a parser that parses a signed 1-byte integer value.
*
* Result token type: TT_SINT
*/
const parser_t* int8(); const parser_t* int8();
/* Returns a parser that parses an unsigned 8-byte integer value. */ /**
* Returns a parser that parses an unsigned 8-byte integer value.
*
* Result token type: TT_UINT
*/
const parser_t* uint64(); const parser_t* uint64();
/* Returns a parser that parses an unsigned 4-byte integer value. */ /**
* Returns a parser that parses an unsigned 4-byte integer value.
*
* Result token type: TT_UINT
*/
const parser_t* uint32(); const parser_t* uint32();
/* Returns a parser that parses an unsigned 2-byte integer value. */ /**
* Returns a parser that parses an unsigned 2-byte integer value.
*
* Result token type: TT_UINT
*/
const parser_t* uint16(); const parser_t* uint16();
/* Returns a parser that parses an unsigned 1-byte integer value. */ /**
* Returns a parser that parses an unsigned 1-byte integer value.
*
* Result token type: TT_UINT
*/
const parser_t* uint8(); const parser_t* uint8();
/* Given another parser, p, returns a parser that skips any whitespace and then applies p. */ /**
* Given another parser, p, returns a parser that skips any whitespace
* and then applies p.
*
* Result token type: p's result type
*/
const parser_t* whitespace(const parser_t* p); const parser_t* whitespace(const parser_t* p);
/* Given another parser, p, and a function f, returns a parser that applies p, then applies f to everything in the AST of p's result. */ /**
* Given another parser, p, and a function f, returns a parser that
* applies p, then applies f to everything in the AST of p's result.
*
* Result token type: any
*/
const parser_t* action(const parser_t* p, const action_t a); const parser_t* action(const parser_t* p, const action_t a);
/* Parse a single character *NOT* in charset */ /**
* Parse a single character *NOT* in the given charset.
*
* Result token type: TT_UINT
*/
const parser_t* not_in(const uint8_t *charset, int length); const parser_t* not_in(const uint8_t *charset, int length);
/* A no-argument parser that succeeds if there is no more input to parse. */ /**
* A no-argument parser that succeeds if there is no more input to
* parse.
*
* Result token type: None. The parse_result_t exists but its AST is NULL.
*/
const parser_t* end_p(); const parser_t* end_p();
/* This parser always fails. */ /**
* This parser always fails.
*
* Result token type: NULL. Always.
*/
const parser_t* nothing_p(); const parser_t* nothing_p();
/* Given an null-terminated list of parsers, apply each parser in order. The parse succeeds only if all parsers succeed. */ /**
* Given a null-terminated list of parsers, apply each parser in order.
* The parse succeeds only if all parsers succeed.
*
* Result token type: TT_SEQUENCE
*/
const parser_t* sequence(const parser_t* p, ...) __attribute__((sentinel)); const parser_t* sequence(const parser_t* p, ...) __attribute__((sentinel));
/* Given an array of parsers, p_array, apply each parser in order. The first parser to succeed is the result; if no parsers succeed, the parse fails. */ /**
* Given an array of parsers, p_array, apply each parser in order. The
* first parser to succeed is the result; if no parsers succeed, the
* parse fails.
*
* Result token type: The type of the first successful parser's result.
*/
const parser_t* choice(const parser_t* p, ...) __attribute__((sentinel)); const parser_t* choice(const parser_t* p, ...) __attribute__((sentinel));
/* Given two parsers, p1 and p2, this parser succeeds in the following cases: /**
* Given two parsers, p1 and p2, this parser succeeds in the following
* cases:
* - if p1 succeeds and p2 fails * - if p1 succeeds and p2 fails
* - if both succeed but p1's result is as long as or shorter than p2's * - if both succeed but p1's result is as long as or shorter than p2's
*
* Result token type: p1's result type.
*/ */
const parser_t* butnot(const parser_t* p1, const parser_t* p2); const parser_t* butnot(const parser_t* p1, const parser_t* p2);
/* Given two parsers, p1 and p2, this parser succeeds in the following cases: /**
* Given two parsers, p1 and p2, this parser succeeds in the following
* cases:
* - if p1 succeeds and p2 fails * - if p1 succeeds and p2 fails
* - if both succeed but p2's result is shorter than p1's * - if both succeed but p2's result is shorter than p1's
*
* Result token type: p1's result type.
*/ */
const parser_t* difference(const parser_t* p1, const parser_t* p2); const parser_t* difference(const parser_t* p1, const parser_t* p2);
/* Given two parsers, p1 and p2, this parser succeeds if *either* p1 or p2 succeed, but not if they both do. /**
* Given two parsers, p1 and p2, this parser succeeds if *either* p1 or
* p2 succeed, but not if they both do.
*
* Result token type: The type of the result of whichever parser succeeded.
*/ */
const parser_t* xor(const parser_t* p1, const parser_t* p2); const parser_t* xor(const parser_t* p1, const parser_t* p2);
/* Given a parser, p, this parser succeeds for zero or more repetitions of p. */ /**
* Given a parser, p, this parser succeeds for zero or more repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const parser_t* many(const parser_t* p); const parser_t* many(const parser_t* p);
/* Given a parser, p, this parser succeeds for one or more repetitions of p. */ /**
* Given a parser, p, this parser succeeds for one or more repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const parser_t* many1(const parser_t* p); const parser_t* many1(const parser_t* p);
/* Given a parser, p, this parser succeeds for exactly N repetitions of p. */ /**
* Given a parser, p, this parser succeeds for exactly N repetitions
* of p.
*
* Result token type: TT_SEQUENCE
*/
const parser_t* repeat_n(const parser_t* p, const size_t n); const parser_t* repeat_n(const parser_t* p, const size_t n);
/* Given a parser, p, this parser succeeds with the value p parsed or with an empty result. */ /**
* Given a parser, p, this parser succeeds with the value p parsed or
* with an empty result.
*
* Result token type: If p succeeded, the type of its result; if not, TT_NONE.
*/
const parser_t* optional(const parser_t* p); const parser_t* optional(const parser_t* p);
/* Given a parser, p, this parser succeeds if p succeeds, but doesn't include p's result in the result. */ /**
* Given a parser, p, this parser succeeds if p succeeds, but doesn't
* include p's result in the result.
*
* Result token type: None. The parse_result_t exists but its AST is NULL.
*/
const parser_t* ignore(const parser_t* p); const parser_t* ignore(const parser_t* p);
/* Given a parser, p, and a parser for a separator, sep, this parser matches a (possibly empty) list of things that p can parse, separated by sep. /**
* For example, if p is repeat1(range('0','9')) and sep is ch(','), sepBy(p, sep) will match a comma-separated list of integers. * Given a parser, p, and a parser for a separator, sep, this parser
* matches a (possibly empty) list of things that p can parse,
* separated by sep.
* For example, if p is repeat1(range('0','9')) and sep is ch(','),
* sepBy(p, sep) will match a comma-separated list of integers.
*
* Result token type: TT_SEQUENCE
*/ */
const parser_t* sepBy(const parser_t* p, const parser_t* sep); const parser_t* sepBy(const parser_t* p, const parser_t* sep);
/* Given a parser, p, and a parser for a separator, sep, this parser matches a list of things that p can parse, separated by sep. Unlike sepBy, this ensures that the result has at least one element. /**
* Given a parser, p, and a parser for a separator, sep, this parser matches a list of things that p can parse, separated by sep. Unlike sepBy, this ensures that the result has at least one element.
* For example, if p is repeat1(range('0','9')) and sep is ch(','), sepBy1(p, sep) will match a comma-separated list of integers. * For example, if p is repeat1(range('0','9')) and sep is ch(','), sepBy1(p, sep) will match a comma-separated list of integers.
*
* Result token type: TT_SEQUENCE
*/ */
const parser_t* sepBy1(const parser_t* p, const parser_t* sep); const parser_t* sepBy1(const parser_t* p, const parser_t* sep);
/* This parser always returns a zero length match, i.e., empty string. */ /**
* This parser always returns a zero length match, i.e., empty string.
*
* Result token type: None. The parse_result_t exists but its AST is NULL.
*/
const parser_t* epsilon_p(); const parser_t* epsilon_p();
/* This parser attaches an attribute function, which returns true or false, to a parser. The function is evaluated over the parser's result AST. /**
* The parse only succeeds if the attribute function returns true. * This parser applies its first argument to read an unsigned integer
* value, then applies its second argument that many times. length
* should parse an unsigned integer value; this is checked at runtime.
* Specifically, the token_type of the returned token must be TT_UINT.
* In future we might relax this to include TT_USER but don't count on it.
*
* Result token type: TT_SEQUENCE
*/ */
const parser_t* attr_bool(const parser_t* p, const attr_bool_t a); const parser_t* length_value(const parser_t* length, const parser_t* value);
/* The 'and' parser is a predicate. It asserts that a conditional syntax is satisfied, but consumes no input. /**
* This parser attaches a predicate function, which returns true or
* false, to a parser. The function is evaluated over the parser's
* result.
* The parse only succeeds if the attribute function returns true.
*
* Result token type: p's result type if pred succeeded, NULL otherwise.
*/
const parser_t* attr_bool(const parser_t* p, predicate_t pred);
/**
* The 'and' parser asserts that a conditional syntax is satisfied,
* but doesn't consume that conditional syntax.
* This is useful for lookahead. As an example: * This is useful for lookahead. As an example:
* *
* Suppose you already have a parser, hex_p, that parses numbers in hexadecimal format (including the leading '0x'). Then * Suppose you already have a parser, hex_p, that parses numbers in
* hexadecimal format (including the leading '0x'). Then
* sequence(and(token((const uint8_t*)"0x", 2)), hex_p) * sequence(and(token((const uint8_t*)"0x", 2)), hex_p)
* checks to see whether there is a leading "0x", *does not* consume the "0x", and then applies hex_p to parse the hex-formatted number. * checks to see whether there is a leading "0x", *does not* consume
* the "0x", and then applies hex_p to parse the hex-formatted number.
* *
* 'and' succeeds if p succeeds, and fails if p fails. Like 'ignore', 'and' does not attach a result to the AST. * 'and' succeeds if p succeeds, and fails if p fails.
*
* Result token type: None. The parse_result_t exists but its AST is NULL.
*/ */
const parser_t* and(const parser_t* p); const parser_t* and(const parser_t* p);
/* The 'not' parser is a predicate. It asserts that a conditional syntax is *not* satisfied, and consumes no input. /**
* The 'not' parser asserts that a conditional syntax is *not*
* satisfied, but doesn't consume that conditional syntax.
* As a somewhat contrived example: * As a somewhat contrived example:
* *
* Since 'choice' applies its arguments in order, the following parser: * Since 'choice' applies its arguments in order, the following parser:
* sequence(ch('a'), choice(ch('+'), token((const uint8_t*)"++"), NULL), ch('b'), NULL) * sequence(ch('a'), choice(ch('+'), token((const uint8_t*)"++"), NULL), ch('b'), NULL)
* will not parse "a++b", because once choice() has succeeded, it will not backtrack and try other alternatives if a later parser in the sequence * will not parse "a++b", because once choice() has succeeded, it will
* fails. * not backtrack and try other alternatives if a later parser in the
* Instead, you can force the use of the second alternative by turning the ch('+') alternative into a sequence with not: * sequence fails.
* Instead, you can force the use of the second alternative by turning
* the ch('+') alternative into a sequence with not:
* sequence(ch('a'), choice(sequence(ch('+'), not(ch('+')), NULL), token((const uint8_t*)"++")), ch('b'), NULL) * sequence(ch('a'), choice(sequence(ch('+'), not(ch('+')), NULL), token((const uint8_t*)"++")), ch('b'), NULL)
* If the input string is "a+b", the first alternative is applied; if the input string is "a++b", the second alternative is applied. * If the input string is "a+b", the first alternative is applied; if
* the input string is "a++b", the second alternative is applied.
*
* Result token type: None. The parse_result_t exists but its AST is NULL.
*/ */
const parser_t* not(const parser_t* p); const parser_t* not(const parser_t* p);
/** /**
* Create a parser that just calls out to another, as yet unknown, parser. * Create a parser that just calls out to another, as yet unknown,
* parser.
* Note that the inner parser gets bound later, with bind_indirect. * Note that the inner parser gets bound later, with bind_indirect.
* This can be used to create recursive parsers. * This can be used to create recursive parsers.
*
* Result token type: the type of whatever parser is bound to it with
* bind_indirect().
*/ */
parser_t *indirect(); parser_t *indirect();
/** /**
* Set the inner parser of an indirect. See comments on indirect for details. * Set the inner parser of an indirect. See comments on indirect for
* details.
*/ */
void bind_indirect(parser_t* indirect, parser_t* inner); void bind_indirect(parser_t* indirect, parser_t* inner);

View file

@ -26,7 +26,7 @@
#else #else
#define assert_message(check, message) do { \ #define assert_message(check, message) do { \
if (!(check)) \ if (!(check)) \
errx(1, "Assertation failed (programmer error): %s", message); \ errx(1, "Assertion failed (programmer error): %s", message); \
} while(0) } while(0)
#endif #endif
#define false 0 #define false 0

View file

@ -94,6 +94,10 @@ static inline void append_buf_c(struct result_buf *buf, char v) {
static void unamb_sub(const parsed_token_t* tok, struct result_buf *buf) { static void unamb_sub(const parsed_token_t* tok, struct result_buf *buf) {
char* tmpbuf; char* tmpbuf;
int len; int len;
if (!tok) {
append_buf(buf, "NULL", 4);
return;
}
switch (tok->token_type) { switch (tok->token_type) {
case TT_NONE: case TT_NONE:
append_buf(buf, "null", 4); append_buf(buf, "null", 4);