lr driver, first stab (still bugged)

This commit is contained in:
Sven M. Hallberg 2013-06-12 15:07:19 +02:00
parent bbdced376e
commit 0a7548bb2f

View file

@ -7,11 +7,7 @@
/* Data structures */
// - states are hashsets containing LRItems
// - LRItems contain an optional lookahead set (HStringMap)
// - states (hashsets) get hash and comparison functions that ignore the lookahead
typedef HHashSet HLRState;
typedef HHashSet HLRState; // states are sets of LRItems
typedef struct HLRDFA_ {
size_t nstates;
@ -30,7 +26,6 @@ typedef struct HLRItem_ {
HCFChoice **rhs; // NULL-terminated
size_t len; // number of elements in rhs
size_t mark;
HStringMap *lookahead; // optional
} HLRItem;
typedef struct HLRAction_ {
@ -56,27 +51,28 @@ typedef struct HLRTable_ {
} HLRTable;
/* Constructing the characteristic automaton (handle recognizer) */
HLRItem *h_lritem_new(HArena *a, HCFChoice *lhs, HCFChoice **rhs, size_t mark)
// compare symbols - terminals by value, others by pointer
static bool eq_symbol(const void *p, const void *q)
{
HLRItem *ret = h_arena_malloc(a, sizeof(HLRItem));
size_t len = 0;
for(HCFChoice **p=rhs; *p; p++) len++;
assert(mark <= len);
ret->lhs = lhs;
ret->rhs = rhs;
ret->len = len;
ret->mark = mark;
ret->lookahead = NULL;
return ret;
const HCFChoice *x=p, *y=q;
return (x==y
|| (x->type==HCF_END && y->type==HCF_END)
|| (x->type==HCF_CHAR && y->type==HCF_CHAR && x->chr==y->chr));
}
// compare LALR items - ignores lookahead
// hash symbols - terminals by value, others by pointer
static HHashValue hash_symbol(const void *p)
{
const HCFChoice *x=p;
if(x->type == HCF_END)
return 0;
else if(x->type == HCF_CHAR)
return x->chr * 33;
else
return h_hash_ptr(p);
}
// compare LALR items by value
static bool eq_lalr_item(const void *p, const void *q)
{
const HLRItem *a=p, *b=q;
@ -124,11 +120,80 @@ static HHashValue hash_lalr_itemset(const void *p)
return hash;
}
HLRItem *h_lritem_new(HArena *a, HCFChoice *lhs, HCFChoice **rhs, size_t mark)
{
HLRItem *ret = h_arena_malloc(a, sizeof(HLRItem));
size_t len = 0;
for(HCFChoice **p=rhs; *p; p++) len++;
assert(mark <= len);
ret->lhs = lhs;
ret->rhs = rhs;
ret->len = len;
ret->mark = mark;
return ret;
}
static inline HLRState *h_lrstate_new(HArena *arena)
{
return h_hashset_new(arena, eq_lalr_item, hash_lalr_item);
}
HLRTable *h_lrtable_new(HAllocator *mm__, size_t nrows)
{
HArena *arena = h_new_arena(mm__, 0); // default blocksize
assert(arena != NULL);
HLRTable *ret = h_new(HLRTable, 1);
ret->nrows = nrows;
ret->rows = h_arena_malloc(arena, nrows * sizeof(HHashTable *));
ret->forall = h_arena_malloc(arena, nrows * sizeof(HLRAction *));
ret->inadeq = h_slist_new(arena);
ret->arena = arena;
ret->mm__ = mm__;
for(size_t i=0; i<nrows; i++) {
ret->rows[i] = h_hashtable_new(arena, eq_symbol, hash_symbol);
ret->forall[i] = NULL;
}
return ret;
}
void h_lrtable_free(HLRTable *table)
{
HAllocator *mm__ = table->mm__;
h_delete_arena(table->arena);
h_free(table);
}
// XXX replace other hashtable iterations with this
// XXX move to internal.h or something
#define H_FOREACH_(HT) { \
const HHashTable *ht__ = HT; \
for(size_t i__=0; i__ < ht__->capacity; i__++) { \
for(HHashTableEntry *hte__ = &ht__->contents[i__]; \
hte__; \
hte__ = hte__->next) { \
if(hte__->key == NULL) continue;
#define H_FOREACH_KEY(HT, KEYVAR) H_FOREACH_(HT) \
const KEYVAR = hte__->key;
#define H_FOREACH(HT, KEYVAR, VALVAR) H_FOREACH_KEY(HT, KEYVAR) \
VALVAR = hte__->value;
#define H_END_FOREACH \
} \
} \
}
/* Constructing the characteristic automaton (handle recognizer) */
static HLRItem *advance_mark(HArena *arena, const HLRItem *item)
{
assert(item->rhs[item->mark] != NULL);
@ -224,7 +289,7 @@ HLRDFA *h_lr0_dfa(HCFGrammar *g)
HLRState *state = h_slist_pop(work);
// maps edge symbols to neighbor states (item sets) of s
HHashTable *neighbors = h_hashtable_new(arena, h_eq_ptr, h_hash_ptr);
HHashTable *neighbors = h_hashtable_new(arena, eq_symbol, hash_symbol);
// iterate over closure and generate neighboring sets
const HHashTable *ht = closure(g, state);
@ -305,55 +370,6 @@ HLRDFA *h_lr0_dfa(HCFGrammar *g)
/* LR(0) table generation */
// XXX replace other hashtable iterations with this
// XXX move to internal.h or something
#define H_FOREACH_(HT) { \
const HHashTable *ht__ = HT; \
for(size_t i__=0; i__ < ht__->capacity; i__++) { \
for(HHashTableEntry *hte__ = &ht__->contents[i__]; \
hte__; \
hte__ = hte__->next) { \
if(hte__->key == NULL) continue;
#define H_FOREACH_KEY(HT, KEYVAR) H_FOREACH_(HT) \
const KEYVAR = hte__->key;
#define H_FOREACH(HT, KEYVAR, VALVAR) H_FOREACH_KEY(HT, KEYVAR) \
VALVAR = hte__->value;
#define H_END_FOREACH \
} \
} \
}
HLRTable *h_lrtable_new(HAllocator *mm__, size_t nrows)
{
HArena *arena = h_new_arena(mm__, 0); // default blocksize
assert(arena != NULL);
HLRTable *ret = h_new(HLRTable, 1);
ret->nrows = nrows;
ret->rows = h_arena_malloc(arena, nrows * sizeof(HHashTable *));
ret->forall = h_arena_malloc(arena, nrows * sizeof(HLRAction *));
ret->inadeq = h_slist_new(arena);
ret->arena = arena;
ret->mm__ = mm__;
for(size_t i=0; i<nrows; i++) {
ret->rows[i] = h_hashtable_new(arena, h_eq_ptr, h_hash_ptr);
ret->forall[i] = NULL;
}
return ret;
}
void h_lrtable_free(HLRTable *table)
{
HAllocator *mm__ = table->mm__;
h_delete_arena(table->arena);
h_free(table);
}
static HLRAction *shift_action(HArena *arena, size_t nextstate)
{
HLRAction *action = h_arena_malloc(arena, sizeof(HLRAction));
@ -579,9 +595,125 @@ void h_lalr_free(HParser *parser)
/* LR driver */
const HLRAction *
h_lr_lookup(const HLRTable *table, size_t state, const HCFChoice *symbol)
{
assert(state < table->nrows);
if(table->forall[state]) {
assert(h_hashtable_empty(table->rows[state])); // that would be a conflict
return table->forall[state];
} else {
return h_hashtable_get(table->rows[state], symbol);
}
}
// XXX also, what about charsets!?
HParseResult *h_lr_parse(HAllocator* mm__, const HParser* parser, HInputStream* stream)
{
return NULL;
HLRTable *table = parser->backend_data;
if(!table)
return NULL;
HArena *arena = h_new_arena(mm__, 0); // will hold the results
HArena *tarena = h_new_arena(mm__, 0); // tmp, deleted after parse
HSlist *left = h_slist_new(tarena); // left stack; reductions happen here
HSlist *right = h_slist_new(tarena); // right stack; input appears here
// stack layout:
// on the left stack, we put pairs: (saved state, semantic value)
// on the right stack, we put pairs: (symbol, semantic value)
// run while the recognizer finds handles in the input
size_t state = 0;
while(1) {
// make sure there is input on the right stack
if(h_slist_empty(right)) {
HCFChoice *x = h_arena_malloc(tarena, sizeof(HCFChoice));
HParsedToken *v;
uint8_t c = h_read_bits(stream, 8, false);
if(stream->overrun) { // end of input
x->type = HCF_END;
v = NULL;
} else {
x->type = HCF_CHAR;
x->chr = c;
v = h_arena_malloc(arena, sizeof(HParsedToken));
v->token_type = TT_UINT;
v->uint = c;
}
h_slist_push(right, v);
h_slist_push(right, x);
}
// peek at input symbol on the right side
HCFChoice *symbol = right->head->elem;
// table lookup
const HLRAction *action = h_lr_lookup(table, state, symbol);
if(action == NULL)
break; // no handle recognizable in input, terminate parsing
if(action->type == HLR_SHIFT) {
h_slist_push(left, (void *)(uintptr_t)state);
h_slist_pop(right); // symbol (discard)
h_slist_push(left, h_slist_pop(right)); // semantic value
state = action->nextstate;
} else {
assert(action->type == HLR_REDUCE);
size_t len = action->production.length;
HCFChoice *symbol = action->production.lhs;
// semantic value of the reduction result
HParsedToken *value = h_arena_malloc(arena, sizeof(HParsedToken));
value->token_type = TT_SEQUENCE;
value->seq = h_carray_new_sized(arena, len);
// pull values off the left stack, rewinding state accordingly
HParsedToken *v;
for(size_t i=0; i<len; i++) {
v = h_slist_pop(left);
state = (uintptr_t)h_slist_pop(left);
// collect values in result sequence
value->seq->elements[len-1-i] = v;
value->seq->used++;
}
// result position equals position of left-most symbol
value->index = v->index;
value->bit_offset = v->bit_offset;
// perform token reshape if indicated
if(symbol->reshape)
value = (HParsedToken *)symbol->reshape(make_result(arena, value));
// call validation and semantic action, if present
if(symbol->pred && !symbol->pred(make_result(tarena, value)))
break; // validation failed -> no parse
if(symbol->action)
value = (HParsedToken *)symbol->action(make_result(arena, value));
// push result (value, symbol) onto the right stack
h_slist_push(right, value);
h_slist_push(right, symbol);
}
}
h_delete_arena(tarena);
// parsing was successful iff the start symbol is on top of the right stack
if(h_slist_pop(right) == table->start) {
// next on the right stack is the start symbol's semantic value
HParsedToken *result = h_slist_pop(right);
assert(result != NULL);
return make_result(arena, result);
} else {
h_delete_arena(arena);
return NULL;
}
}